Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(3): e25088, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322909

ABSTRACT

Non-Newtonian fluids are essential in situations where heat and mass transfer are involved. Heat and mass transfer processes increase efficiency when nanoparticles (0.01≤φ≤0.03) are added to these fluids. The present study implements a computational approach to investigate the behavior of non-Newtonian nanofluids on the surface of an upright cone. Viscous dissipation (0.3≤Ec≤0.9) and magnetohydrodynamics (MHD) (1≤M≤3) are also taken into account. Furthermore, we explore how microorganisms impact the fluid's mass and heat transfer. The physical model's governing equations are transformed into ordinary differential equations (ODEs) using a similarity transformation to make the analysis easier. The ODEs are solved numerically using the Bvp4c solver in MATLAB. The momentum, thermal, concentration, and microbe diffusion profiles are graphically represented in the current research. MHD (1≤M≤3) effects improve the diffusion of microbes, resulting in increased heat and mass transfer rates of 18 % and 19 %, respectively, based on our results. Furthermore, a comparison of our findings with existing literature demonstrates promising agreement.

2.
ScientificWorldJournal ; 2023: 5549746, 2023.
Article in English | MEDLINE | ID: mdl-37426576

ABSTRACT

An upstraight cone with nonisothermal surface velocity, temperature, and concentration was investigated using a numerical solution approach to simulate MHD, MB dye, and various nanofluid flows. Numerical evaluation of the flow field equation was carried out using an excellent finite difference method after it has been converted into a dimensionless form. Different heat transfer occurrences were observed depending on temperature, velocity, and concentration when using several types of nanofluids (TiO, Ag, Cu, and Al2O3Z3). The amount of MB dye that was degraded by the synthesized nanofluids under the influence of sunlight irradiation was 81.40 percent as a catalyst (carbon nanodots). The parametric analysis of various features of flow fields has been shown using graphs. It was observed that heat is generated from the cone during the sun light irradiation reaction, heat is transferred to MB dye containing nanofluids, and heat interacts with nanofluids and is involved in the chemical reaction with the assistance of electrons. As MB dye degrades in the absence of catalysts (carbon nanodots), it is only 52 percent effective. MB dye is degraded at 81.40 percent, then becomes stable, and takes 120 minutes to degrade in nanofluids containing MB dye with catalysts (carbon nanodots).

3.
Sci Rep ; 13(1): 2878, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36808145

ABSTRACT

Recently, Nanoparticles have supplied diverse challenges to several scientific issues. Nanoparticles dispersed in a variety of conventional fluids can change the flow and heat transmission properties of the fluids. The mathematical technique is used in this work to investigate the MHD water-based nanofluid flow via an upright cone. The heat and mass flux pattern is used in this mathematical model to examine MHD, viscous dissipation, radiation, chemical reactions and suction/injection processes. The finite difference approach was used to find the solution to the basic governing equations. A combination of nanofluids comprising nanoparticles including aluminum oxide (Al[Formula: see text]O[Formula: see text]), silver (Ag), copper (Cu) and titanium dioxide (TiO[Formula: see text]) with a volume fraction of nanoparticles (0, 0.01, 0.02, 0.03, 0.04), viscous dissipation ([Formula: see text]), MHD (M = 0.5, 1.0), radiation (Rd = 0.4, 1.0, 2.0), chemical reaction ([Formula: see text]) and heat source/sink ([Formula: see text]) . The mathematical findings of velocity, temperature, concentration, skin friction, heat transfer rate as well as Sherwood number distributions are analyzed diagrammatically using non-dimensional flow parameters. It has been discovered that by increasing the value of the radiation parameter, velocity and temperature profiles enhance. The production of safe, high-quality products for consumers across the world depends on vertical cone mixers, from food to medicine, household cleansers to personal hygiene products. Every vertical cone mixer type we provide was especially developed to meet the demands of industry. As the mixer warms up on the slanted surface of the cone while vertical cone mixers are being utilized, the effectiveness of the grinding may be felt. The temperature is transferred along the cone's slant surface as a consequence of the mixture being mixed quickly and repeatedly. This study describes the heat transmission in these events and their parametric properties. The heated cone's temperature is then convective to its surroundings.

SELECTION OF CITATIONS
SEARCH DETAIL