Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 21581, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517543

ABSTRACT

The development of ultra-dense heterogeneous networks (HetNets) will cause a significant rise in energy consumption with large-scale base station (BS) deployments, requiring cellular networks to be more energy efficient to reduce operational expense and promote sustainability. Cell switching is an effective method to achieve the energy efficiency goals, but traditional heuristic cell switching algorithms are computationally demanding with limited generalization abilities for ultra-dense HetNet applications, motivating the usage of machine learning techniques for adaptive cell switching. Graph neural networks (GNNs) are powerful deep learning models with strong generalization abilities but receive little attention for cell switching. This paper proposes a GNN-based cell switching solution (GBCSS) that has a smaller computational complexity than existing heuristic algorithms. The presented performance evaluation uses the Milan telecommunication dataset based on real-world call detail records, comparing GBCSS with a traditional exhaustive search (ES) algorithm, a state-of-the-art learning-based algorithm, and the baseline without cell switching. Results indicate that GBCSS achieves a 10.41% energy efficiency gain when compared with the baseline and achieves 75.76% of the optimal performance obtained with ES algorithm. The results also demonstrate GBCSS' significant scalability and generalization abilities to differing load conditions and the number of BSs, suggesting this approach is well-suited to ultra-dense HetNet deployment.


Subject(s)
Neural Networks, Computer , Neurons , Physical Phenomena , Algorithms , Machine Learning
2.
Sci Rep ; 12(1): 16893, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207432

ABSTRACT

In this paper, the cell-free massive multiple input multiple output (MIMO) network is affected by the pilot contamination phenomenon when a large number of users and a small number of available pilots exists, the quality of service (QoS) will deteriorate due to the low accuracy of the channel estimation because some of users will use the same pilot. Therefore, we address this problem by presenting two novel schemes of pilot assignment and pilot power control design based on the matching technique for the uplink of cell-free massive MIMO systems to maximize spectral efficiency. We first formulate an assignment optimization problem in order to find the best possible pilot sequence to be used by utilizing genetic algorithm (GA) and then propose a Hungarian matching algorithm to solve this formulated problem. Regarding the power control design, we formulate a minimum-weighted assignment problem to assign pilot power control coefficients to the estimated channel's minimum mean-squared error by considering the access point (AP) selection. Then, we also propose the Hungarian algorithm to solve this problem. Simulation results show that our proposed schemes outperform the state-of-the-art techniques concerning both the pilot assignment and the pilot power control design by achieving a 15% improvement in the spectral efficiency. Finally, the computational complexity analysis is provided for the proposed schemes compared with the state-of-the-art techniques.


Subject(s)
Algorithms , Systems Analysis , Computer Simulation , Records
3.
Front Big Data ; 4: 640868, 2021.
Article in English | MEDLINE | ID: mdl-34240048

ABSTRACT

With the advancement of social media networks, there are lots of unlabeled reviews available online, therefore it is necessarily to develop automatic tools to classify these types of reviews. To utilize these reviews for user perception, there is a need for automated tools that can process online user data. In this paper, a sentiment analysis framework has been proposed to identify people's perception towards mobile networks. The proposed framework consists of three basic steps: preprocessing, feature selection, and applying different machine learning algorithms. The performance of the framework has taken into account different feature combinations. The simulation results show that the best performance is by integrating unigram, bigram, and trigram features.

SELECTION OF CITATIONS
SEARCH DETAIL
...