Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 485(7396): 86-9, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22552096

ABSTRACT

Technological applications of liquid crystals have generally relied on control of molecular orientation at a surface or an interface. Such control has been achieved through topography, chemistry and the adsorption of monolayers or surfactants. The role of the substrate or interface has been to impart order over visible length scales and to confine the liquid crystal in a device. Here, we report results from a computational study of a liquid-crystal-based system in which the opposite is true: the liquid crystal is used to impart order on the interfacial arrangement of a surfactant. Recent experiments on macroscopic interfaces have hinted that an interfacial coupling between bulk liquid crystal and surfactant can lead to a two-dimensional phase separation of the surfactant at the interface, but have not had the resolution to measure the structure of the resulting phases. To enhance that coupling, we consider the limit of nanodroplets, the interfaces of which are decorated with surfactant molecules that promote local perpendicular orientation of mesogens within the droplet. In the absence of surfactant, mesogens at the interface are all parallel to that interface. As the droplet is cooled, the mesogens undergo a transition from a disordered (isotropic) to an ordered (nematic or smectic) liquid-crystal phase. As this happens, mesogens within the droplet cause a transition of the surfactant at the interface, which forms new ordered nanophases with morphologies dependent on surfactant concentration. Such nanophases are reminiscent of those encountered in block copolymers, and include circular, striped and worm-like patterns.


Subject(s)
Liquid Crystals/chemistry , Nanostructures/chemistry , Surface-Active Agents/chemistry , Temperature
2.
Proc Natl Acad Sci U S A ; 106(43): 18125-30, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19815517

ABSTRACT

DNA hybridization plays a central role in biology and, increasingly, in materials science. Yet, there is no precedent for examining the pathways by which specific single-stranded DNA sequences interact to assemble into a double helix. A detailed model of DNA is adopted in this work to examine such pathways and to determine the role of sequence, if any, on DNA hybridization. Transition path sampling simulations reveal that DNA rehybridization is prompted by a distinct nucleation event involving molecular sites with approximately four bases pairing with partners slightly offset from those involved in ideal duplexation. Nucleation is promoted in regions with repetitive base pair sequence motifs, which yield multiple possibilities for finding complementary base partners. Repetitive sequences follow a nonspecific pathway to renaturation consistent with a molecular "slithering" mechanism, whereas random sequences favor a restrictive pathway involving the formation of key base pairs before renaturation fully ensues.


Subject(s)
DNA/chemistry , Oligonucleotides/chemistry , Phase Transition , Base Pairing , Base Sequence , Nucleic Acid Conformation , Nucleic Acid Hybridization , Transition Temperature
3.
Biophys J ; 96(5): 1675-90, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-19254530

ABSTRACT

A mesoscale model of DNA is presented (3SPN.1), extending the scheme previously developed by our group. Each nucleotide is mapped onto three interaction sites. Solvent is accounted for implicitly through a medium-effective dielectric constant and electrostatic interactions are treated at the level of Debye-Hückel theory. The force field includes a weak, solvent-induced attraction, which helps mediate the renaturation of DNA. Model parameterization is accomplished through replica exchange molecular dynamics simulations of short oligonucleotide sequences over a range of composition and chain length. The model describes the melting temperature of DNA as a function of composition as well as ionic strength, and is consistent with heat capacity profiles from experiments. The dependence of persistence length on ionic strength is also captured by the force field. The proposed model is used to examine the renaturation of DNA. It is found that a typical renaturation event occurs through a nucleation step, whereby an interplay between repulsive electrostatic interactions and colloidal-like attractions allows the system to undergo a series of rearrangements before complete molecular reassociation occurs.


Subject(s)
DNA/chemistry , Models, Chemical , Nucleic Acid Renaturation , Algorithms , Computer Simulation , Hot Temperature , Models, Molecular , Osmolar Concentration , Static Electricity , Transition Temperature
4.
J Phys Condens Matter ; 21(3): 034105, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-21817250

ABSTRACT

The renaturation/denaturation of DNA oligonucleotides is characterized in the context of expanded ensemble (EXE) and transition path sampling (TPS) simulations. Free energy profiles have been determined from EXE for DNA sequences of varying composition, chain length, and ionic strength. TPS simulations within a Langevin dynamics formalism have been carried out to obtain further information of the transition state for renaturation. Simulation results reveal that free energy profiles are strikingly similar for the various DNA sequences considered in this work. Taking intact double-stranded DNA to have an extent of reaction ξ = 1.0, the maximum of the free energy profile appears at ξ≈0.15, corresponding to ∼2 base pairs. In terms of chain length, the free energy barrier of longer oligonucleotides (30 versus 15 base pairs) is higher and slightly narrower, due to increased sharpness associated with the transition. Low ionic strength tends to decrease free energy barriers, whereby increasing strand rigidity facilitates reassociation. Two mechanisms for DNA reassociation emerge from our analysis of the transition state ensemble. Repetitive sequences tend to reassociate through a non-specific pathway involving molecular slithering. In contrast, random sequences associate through a more restrictive pathway involving the formation of specific contacts, which then leads to overall molecular zippering. In both random and repetitive sequences, the distribution of contacts suggests that nucleation is favored for sites located within the middle region of the chain. The prevalent extent of reaction for the transition state is ξ≈0.25, and the critical size of the nucleus as obtained from our analysis involves ∼4 base pairs.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 1): 051801, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18233675

ABSTRACT

A microscopic theory for coarse graining diblock copolymers into dumbbells of interacting soft colloidal particles has been developed based on the solution of liquid-state integral equations. The Ornstein-Zernike equation is solved to provide a mesoscopic description of the diblock copolymer system at the level of block centers of mass, and at the level of polymer centers of mass. Analytical forms of the total correlation functions for block-block, block-monomer, and center-of-mass pairs are obtained for a liquid of structurally symmetric diblock copolymers as a function of temperature, density, chain length, and chain composition. The theory correctly predicts thermodynamically driven segregation of diblocks into microdomains as a function of temperature (chi parameter). The coarse-grained description contains contributions from density and concentration fluctuations, with the latter becoming dominant as temperature decreases. Numerical calculations for the block coarse-grained total correlation functions, as a function of the proximity of the system to its phase transition, are presented. Comparison with united atom molecular dynamics simulations are carried out in the athermal regime, where simulations and theory quantitatively agree with no need of adjustable parameters.

6.
J Chem Phys ; 125(23): 234902, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17190572

ABSTRACT

Starting from the Ornstein-Zernike equation the authors derive an analytical theory, at the level of pair correlation functions, which coarse grains polymer melts into liquids of interacting soft colloidal particles. Since it is analytical, the presented coarse-graining approach will be useful in developing multiscale modeling procedures to simulate complex fluids of macromolecules. The accuracy of the theory is tested by its capacity to reproduce the liquid structure, as given by the center-of-mass intermolecular total pair correlation function. The theory is found to agree well with the structure predicted by molecular dynamics simulations of the liquid described at the united atom level as well as by molecular dynamics simulations of the liquid of interacting colloidal particles. The authors perform simulations of the liquid of interacting colloidal particles having as input the potential obtained from their analytical total pair correlation function by enforcing the hypernetted-chain closure approximation. Tests systems are polyethylene melts of chains with increasing degrees of polymerization and polymer melts of chains with different chemical architectures. They also discuss the effect of adopting different conventional approximations for intra- and intermolecular monomer structure factors on the accuracy of the coarse-graining procedure, as well as the relevance of higher-order corrections to their expression.

7.
J Chem Phys ; 122(5): 54907, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15740353

ABSTRACT

We present a theoretical approach which maps polymer blends onto mixtures of soft-colloidal particles. The analytical mesoscale pair correlation functions reproduce well data from united atom molecular dynamics simulations of polyolefin mixtures without fitting parameters. The theory exactly recovers the analytical expressions for density and concentration fluctuation structure factors of soft-colloidal mixtures (liquid alloys).

8.
Phys Rev Lett ; 93(25): 257803, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15697944

ABSTRACT

An analytical description of polymer melts and their mixtures as liquids of interacting soft colloidal particles is obtained from liquid-state theory. The derived center-of-mass pair correlation functions with no adjustable parameters reproduce those computed from united atom molecular dynamics simulations. The coarse-grained description correctly bridges micro- and mesoscopic fluid properties. Molecular dynamics simulations of soft colloidal particles interacting through the calculated effective pair potentials are consistent with data from microscale simulations and analytical formulas.


Subject(s)
Colloids/chemistry , Complex Mixtures/chemistry , Macromolecular Substances/chemistry , Microfluidics/methods , Models, Chemical , Models, Molecular , Solutions/chemistry , Colloids/analysis , Complex Mixtures/analysis , Computer Simulation , Macromolecular Substances/analysis , Models, Statistical , Particle Size , Solutions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...