Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167311, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909851

ABSTRACT

Tumours exhibit significant heterogeneity in their molecular profiles across patients, largely influenced by the tissue of origin, where certain driver gene mutations are predominantly associated with specific cancer types. Here, we unveil an additional layer of complexity: some cancer types display anatomic location-specific mutation profiles akin to tissue-specificity. To better understand this phenomenon, we concentrate on colon cancer. While prior studies have noted changes of the frequency of molecular alterations along the colon, the underlying reasons and whether those changes occur rather gradual or are distinct between the left and right colon, remain unclear. Developing and leveraging stringent statistical models on molecular data from 522 colorectal tumours from The Cancer Genome Atlas, we reveal disparities in molecular properties between the left and right colon affecting many genes. Interestingly, alterations in genes responsive to environmental cues and properties of the tumour ecosystem, including metabolites which we quantify in a cohort of 27 colorectal cancer patients, exhibit continuous trends along the colon. Employing network methodologies, we uncover close interactions between metabolites and genes, including drivers of colon cancer, showing continuous abundance or alteration profiles. This underscores how anatomic biases in the composition and interactions within the tumour ecosystem help explaining gradients of carcinogenesis along the colon.

2.
Genome Med ; 15(1): 32, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37131219

ABSTRACT

BACKGROUND: The association between microbes and cancer has been reported repeatedly; however, it is not clear if molecular tumour properties are connected to specific microbial colonisation patterns. This is due mainly to the current technical and analytical strategy limitations to characterise tumour-associated bacteria. METHODS: Here, we propose an approach to detect bacterial signals in human RNA sequencing data and associate them with the clinical and molecular properties of the tumours. The method was tested on public datasets from The Cancer Genome Atlas, and its accuracy was assessed on a new cohort of colorectal cancer patients. RESULTS: Our analysis shows that intratumoural microbiome composition is correlated with survival, anatomic location, microsatellite instability, consensus molecular subtype and immune cell infiltration in colon tumours. In particular, we find Faecalibacterium prausnitzii, Coprococcus comes, Bacteroides spp., Fusobacterium spp. and Clostridium spp. to be strongly associated with tumour properties. CONCLUSIONS: We implemented an approach to concurrently analyse clinical and molecular properties of the tumour as well as the composition of the associated microbiome. Our results may improve patient stratification and pave the path for mechanistic studies on microbiota-tumour crosstalk.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Microbiota , Humans , Colorectal Neoplasms/genetics , Colonic Neoplasms/genetics , Bacteria/genetics , Sequence Analysis, RNA
3.
Stem Cells ; 39(8): 1107-1119, 2021 08.
Article in English | MEDLINE | ID: mdl-33739574

ABSTRACT

The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.


Subject(s)
Neural Stem Cells , Proto-Oncogene Proteins c-fos , SOXB1 Transcription Factors , Animals , Cell Proliferation/genetics , Cell Self Renewal/genetics , Gene Expression Regulation , Gene Regulatory Networks , Mice , Neural Stem Cells/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...