Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Brain ; 17(1): 30, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802853

ABSTRACT

The Hypothalmic-Pituitary-Adrenal axis also known as the HPA axis is central to stress response. It also acts as the relay center between the body and the brain. We analysed hypothalamic proteome from mice subjected to chronic social defeat paradigm using iTRAQ based quantitative proteomics to identify changes associated with stress response. We identified greater than 2000 proteins after processing our samples analysed through Q-Exactive (Thermo) and Orbitrap Velos (Thermo) at 5% FDR. Analysis of data procured from the runs showed that the proteins whose levels were affected belonged primarily to mitochondrial and metabolic processes, translation, complement pathway among others. We also found increased levels of fibrinogen, myelin basic protein (MBP) and neurofilaments (NEFL, NEFM, NEFH) in the hypothalamus from socially defeated mice. Interestingly, research indicates that these proteins are upregulated in blood and CSF of subjects exposed to trauma and stress. Since hypothalamus secreted proteins can be found in blood and CSF, their utility as biomarkers in depression holds an impressive probability and should be validated in clinical samples.


Subject(s)
Hypothalamus , Mice, Inbred C57BL , Social Defeat , Stress, Psychological , Animals , Hypothalamus/metabolism , Stress, Psychological/metabolism , Stress, Psychological/blood , Male , Proteomics/methods , Mice , Proteome/metabolism
2.
Front Mol Neurosci ; 11: 133, 2018.
Article in English | MEDLINE | ID: mdl-29743870

ABSTRACT

We earlier reported that the male mice lacking the Wdr13 gene (Wdr13-/0) showed mild anxiety, better memory retention, and up-regulation of synaptic proteins in the hippocampus. With increasing evidences from parallel studies in our laboratory about the possible role of Wdr13 in stress response, we investigated its role in brain. We observed that Wdr13 transcript gets up-regulated in the hippocampus of the wild-type mice exposed to stress. To further dissect its function, we analyzed the behavioral and molecular phenotypes of Wdr13-/0 mice when subjected to mild chronic psychological stress, namely; mild (attenuated) social isolation. We employed iTRAQ based quantitative proteomics, real time PCR and western blotting to investigate molecular changes. Three weeks of social isolation predisposed Wdr13-/0 mice to anhedonia, heightened anxiety-measured by Open field test (OFT), increased behavior despair- measured by Forced swim test (FST) and reduced dendritic branching along with decreased spine density of hippocampal CA1 neurons as compared to wild-type counterparts. This depression-like-phenotype was however ameliorated when treated with anti-depressant imipramine. Molecular analysis revealed that out of 1002 quantified proteins [1% False discovery rate (FDR), at-least two unique peptides], strikingly, a significant proportion of synaptic proteins including, SYN1, CAMK2A, and RAB3A were down-regulated in the socially isolated Wdr13-/0 mice as compared to its wild-type counterparts. This was in contrast to the elevated levels of these proteins in non-stressed mutants as compared to the controls. We hypothesized that a de-regulated transcription factor upstream of the synaptic genes might be responsible for the observed phenotype. Indeed, in the socially isolated Wdr13-/0 mice, there was an up-regulation of GATA1 - a transcription factor that negatively regulates synaptic genes and has been associated with Major Depression (MD) in humans. The present study demonstrates significant genotype × enviornment interaction for Wdr13 gene as shown by the reversal in the expression levels of several synaptic proteins in the mutant vis-à-vis wild-type mouse when exposed to social isolation stress.

3.
Front Mol Neurosci ; 9: 73, 2016.
Article in English | MEDLINE | ID: mdl-27625594

ABSTRACT

WDR13 expresses from the X chromosome and has a highly conserved coding sequence. There have been multiple associations of WDR13 with memory. However, its detailed function in context of brain and behavior remains unknown. We characterized the behavioral phenotype of 2 month old male mice lacking the homolog of WDR13 gene (Wdr13 (-/0)). Taking cue from analysis of its expression in the brain, we chose hippocampus for molecular studies to delineate its function. Wdr13 (-/0) mice spent less time in the central area of the open field test (OFT) and with the novel object in novel object recognition test (NOR) as compared to the wild-type. However, these mice didn't show any significant changes in total time spent in arms or in frequency of arm entries in elevated plus maze (EPM). In the absence of Wdr13, there was a significant upregulation of synaptic proteins, viz., SYN1, RAB3A, CAMK2A etc. accompanied with increased spine density of hippocampal CA1 neurons and better spatial memory in mice as measured by increased time spent in the target quadrant of Morris water maze (MWM) during probe test. Parallel study from our lab has established c-JUN, ER α/ß, and HDAC 1,3,7 as interacting partners of WDR13. WDR13 represses transcription from AP1 (c-JUN responsive) and Estrogen Receptor Element (ERE) promoters. We hypothesized that absence of Wdr13 would result in de-regulated expression of a number of genes including multiple synaptic genes leading to the observed phenotype. Knocking down Wdr13 in Neuro2a cell lines led to increased transcripts of Camk2a and Nrxn2 consistent with in-vivo results. Summarily, our data provides functional evidence for the role of Wdr13 in brain.

4.
J Proteomics Bioinform ; 5(2)2012 Jan 30.
Article in English | MEDLINE | ID: mdl-23483634

ABSTRACT

Epilepsy is one of the most prevalent neurological disorders affecting ~1% of the population. Medial temporal lobe epilepsy (MTLE) is the most frequent type of epilepsy observed in adults who do not respond to pharmacological treatment. The reason for intractability in these patients has not been systematically studied. Further, no markers are available that can predict the subset of patients who will not respond to pharmacotherapy. To identify potential biomarkers of epileptogenicity, we compared the mRNA profiles of surgically resected tissue from seizure zones with non-seizure zones from cases of intractable MTLE. We identified 413 genes that exhibited ≥2-fold change that were statistically significant across these two groups. Several of these differentially expressed genes have not been previously described in the context of MTLE including claudin 11 (CLDN11) and bone morphogenetic protein receptor, type IB (BMPR1B). In addition, we found significant downregulation of a subset of gamma-aminobutyric acid (GABA) associated genes. We also identified molecules such as BACH2 and ADAMTS15, which are already known to be associated with epilepsy. We validated one upregulated molecule, serine/threonine kinase 31 (STK31) and one downregulated molecule, SMARCA4, by immunohistochemical labeling of tissue sections. These molecules need to be further confirmed in large-scale studies to determine their potential use as diagnostic as well as prognostic markers in intractable MTLE.

5.
J Proteomics Bioinform ; 4(4): 74-82, 2011 Apr.
Article in English | MEDLINE | ID: mdl-27030788

ABSTRACT

Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent's whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma.

6.
J Proteomics Bioinform ; 42011 Oct 29.
Article in English | MEDLINE | ID: mdl-24255551

ABSTRACT

Human thyroid stimulating hormone (TSH) is a glycoprotein secreted by the anterior part of the pituitary gland. TSH plays an important physiological role in the regulation of hypothalamic-pituitary-thyroid axis by modulating the release of the thyroid hormones from the thyroid gland. It induces iodine uptake by the thyroid, promotes thyroid epithelial differentiation and growth, and protects thyroid cells from apoptosis. Impairment of TSH signal transduction pathway leads to thyroid disorders such as goitre, hypothyroidism and hyperthyroidism, which can have complex clinical manifestations. TSH signaling is largely effected through two separate pathways, the adenylate cyclase and the phospholipase C pathways. In spite of its biomedical importance, a concise signaling map of TSH pathway is not available in the public domain. Therefore, we have generated a detailed signaling map of TSH pathway by systematically cataloging the molecular reactions induced by TSH including protein-protein interactions, post-translational modifications, protein translocation events and activation/inhibition reactions. We have cataloged 40 molecular association events, 42 enzyme-substrate reactions and 16 protein translocation events in TSH signaling pathway resource. Additionally, we have documented 208 genes, which are differentially regulated by TSH. We have provided the details of TSH pathway through NetPath (http://www.netpath.org), which is a publicly available resource for human signaling pathways developed by our group. We have also depicted the map of TSH signaling using NetSlim criteria (http://www.netpath.org/netslim/) and provided pathway maps in Wikipathways (http://www.wikipathways.org/). We anticipate that the availability of TSH pathway as a community resource will enhance further biomedical investigations into the function and effects of this important hormone.

SELECTION OF CITATIONS
SEARCH DETAIL
...