Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(2): 108801, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38303725

ABSTRACT

The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.

2.
J Infect Dis ; 227(3): 391-401, 2023 02 01.
Article in English | MEDLINE | ID: mdl-34648018

ABSTRACT

The antigen presentation molecule MR1 (major histocompatibility complex, class I-related) presents ligands derived from the riboflavin (vitamin B) synthesis pathway, which is not present in mammalian species or viruses, to mucosal-associated invariant T (MAIT) cells. In this study, we demonstrate that varicella zoster virus (VZV) profoundly suppresses MR1 expression. We show that VZV targets the intracellular reservoir of immature MR1 for degradation, while preexisting, ligand-bound cell surface MR1 is protected from such targeting, thereby highlighting an intricate temporal relationship between infection and ligand availability. We also identify VZV open reading frame (ORF) 66 as functioning to suppress MR1 expression when this viral protein is expressed during transient transfection, but this is not apparent during infection with a VZV mutant virus lacking ORF66 expression. This indicates that VZV is likely to encode multiple viral genes that target MR1. Overall, we identify an immunomodulatory function of VZV whereby infection suppresses the MR1 biosynthesis pathway.


Subject(s)
Herpesvirus 3, Human , Histocompatibility Antigens Class I , Animals , Herpesvirus 3, Human/genetics , Ligands , Minor Histocompatibility Antigens , Major Histocompatibility Complex , Mammals
3.
Crit Rev Immunol ; 41(5): 49-67, 2021.
Article in English | MEDLINE | ID: mdl-35381139

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are abundant innate-like T cells important in antimicrobial immunity. These cells express a semi-invariant T cell receptor that recognizes the Major Histocompatibility Complex (MHC) class I-related protein 1 (MR1) in complex with small metabolite antigens derived from a range of commensal and pathogenic bacteria and yeasts, but not other pathogens such as viruses. Thus, MR1 stimulation of MAIT cells was thought to act as a sensor of bacterial infection and was not directly involved in anti-viral immunity. Surprisingly, viruses have recently been shown to directly impair MR1 antigen presentation by targeting the intracellular pool of MR1 for degradation. In this review, we summarize our current understanding of viral evasion of MR1 presentation pathway, and contrast this to evasion of other related MHC molecules. We examine MAIT cell activity in viral infection with a focus on the role of TCR-mediated activation of these innate-like cells and speculate on the selective pressure for viral evasion of MR1 antigen presentation. Overall, viral evasion of MR1 presentation uncovers a new avenue of research and implies that the MR1-MAIT cell axis is more important in viral immunity than was previously appreciated.


Subject(s)
Antigen Presentation , Mucosal-Associated Invariant T Cells , Virus Diseases , Histocompatibility Antigens Class I/metabolism , Humans , Minor Histocompatibility Antigens/metabolism , Receptors, Antigen, T-Cell/metabolism , Virus Diseases/immunology
4.
Cell Rep ; 30(9): 2948-2962.e4, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130899

ABSTRACT

The antigen-presenting molecule MR1 presents microbial metabolites related to vitamin B2 biosynthesis to mucosal-associated invariant T cells (MAIT cells). Although bacteria and fungi drive the MR1 biosynthesis pathway, viruses have not previously been implicated in MR1 expression or its antigen presentation. We demonstrate that several herpesviruses inhibit MR1 cell surface upregulation, including a potent inhibition by herpes simplex virus type 1 (HSV-1). This virus profoundly suppresses MR1 cell surface expression and targets the molecule for proteasomal degradation, whereas ligand-induced cell surface expression of MR1 prior to infection enables MR1 to escape HSV-1-dependent targeting. HSV-1 downregulation of MR1 is dependent on de novo viral gene expression, and we identify the Us3 viral gene product as functioning to target MR1. Furthermore, HSV-1 downregulation of MR1 disrupts MAIT T cell receptor (TCR) activation. Accordingly, virus-mediated targeting of MR1 defines an immunomodulatory strategy that functionally disrupts the MR1-MAIT TCR axis.


Subject(s)
Antigen Presentation/immunology , Cytomegalovirus/physiology , Herpesvirus 1, Human/physiology , Histocompatibility Antigens Class I/metabolism , Minor Histocompatibility Antigens/metabolism , Cell Line , Cell Membrane/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/virology , Gene Expression Regulation, Viral/drug effects , Humans , Jurkat Cells , Ligands , Male , Mucosal-Associated Invariant T Cells/immunology , Proteasome Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Proteolysis/drug effects , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...