Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38202546

ABSTRACT

We report the preparation of surfactant-assisted carbon nanotube dispersions using gum arabic, Triton X-100, and graphene oxide as dispersing agents for removing rare earth elements in an aqueous solution. The analytical tools, including (a) scanning electron microscopy and (b) neutron activation analysis, were utilized for qualitative and quantitative examinations, respectively. Neutron activation analysis was employed to quantitatively determine the percent of extraction of nuclides onto the carbon structure, while the images produced from the scanning electron microscope allowed the morphological structure of the surfactant-CNT complex to be analyzed. This report tested the effects responsible for nuclide removal onto CNTs, including the adsorbent to target mass ratio, the CNT concentration and manufacturing process, the pH, and the ionic radius. Observable trends in nuclide extraction were found for each parameter change, with the degree of dispersion displaying high dependency.

2.
Chem Commun (Camb) ; 56(69): 9994-9997, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32724979

ABSTRACT

The use of protonation to switch nonaromatic expanded porphyrins to their corresponding anti-aromatic forms has not been widely explored. Here, we show that free-base pyriamethyrin and dipyriamethyrin display nonaromatic character, as inferred from NMR spectroscopic analyses, their optical properties, and theoretical calculations. Addition of two protons extends the π - conjugation of these amethyrin analogues and yields formally anti-aromatic systems.

3.
Chem Sci ; 10(21): 5596-5602, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31293744

ABSTRACT

A new mixed hexaphyrin, pyrihexaphyrin (0.1.0.0.1.0) (1), was prepared via an acid catalyzed cyclization between 5,5'-(pyridine-2,6-diyl)bis(pyrrole-2-carbaldehyde) (2) and terpyrrole (3). This expanded porphyrin undergoes a ring contraction upon metallation with uranyl silylamide [UO2[N(SiMe3)2]2] under anaerobic conditions followed by purification over basic aluminum oxide exposed to air. The uranyl-contracted pyrihexaphyrin (0.0.0.0.1.0) complex (4) produced as a result contains a unique structural architecture and possesses a formally 22 π-electron globally aromatic periphery, as inferred from NMR spectroscopy, single crystal X-ray diffraction, and computational analyses. Support for the proposed contraction mechanism came from experimental data and DFT calculations. Proton NMR and mass spectroscopic analysis provided the first insight into expanded porphyrin-mediated activation of the uranyl dication (UO2 2+).

SELECTION OF CITATIONS
SEARCH DETAIL
...