Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Noncoding RNA Res ; 8(3): 451-458, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37455764

ABSTRACT

Background: Anaplastic thyroid cancer (ATC) is one of the most aggressive malignancies in humans that accounts for a considerable rate of cancer-associated mortality. Since conventional therapies are lacking sufficient efficacy, new treatment approaches are required. This goal could be achieved through a better understanding of the molecular pathogenesis of ATC. Thyroid tumorigenesis is initiated by a subpopulation of cells known as cancer stem cells (CSCs) with specific markers such as CD133 that confers to processes such as self-renewal and metastasis. Besides, some long non-coding RNAs (lncRNAs) promote tumorigenesis by mediating the aforementioned processes. Methods: Here, we designed an exploratory study to investigate the role of lncRNAs ROR and MALAT1 and their related genes in CSC stemness. Using magnetic-activated cell sorting (MACS), the CD133- and CD133+ subpopulations were separated in SW1736 and C643 ATC cell lines. Next, the expression profiles of the CD133 marker, MALAT1, and its associated genes (CCND1, NESTIN, MYBL2, MCL1, IQGAP1), as well as ROR and its related genes (POU5F1, SOX2, NANOG), were explored by qRT-PCR. Results: We found significant up-regulation of ROR, POU5F1, SOX2, NANOG, CD133, MALAT1, IQGAP1, and MCL1 in CD133+ SW1736 cells compared to CD133- cells. As for CD133+ C643 cells, CCND1, IQGAP1, POU5F1, SOX2, NANOG, and NESTIN were significantly up-regulated compared to CD133- cells. Conclusions: This study suggests that these lncRNAs in CD133-positive SW1736 and C643 cells might regulate stemness behaviors in ATC.

2.
Cancer Cell Int ; 22(1): 388, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482411

ABSTRACT

BACKGROUND: Anaplastic thyroid carcinoma (ATC) is the most aggressive subtype of thyroid cancer. In this study, we used a three-dimensional in vitro system to evaluate the effect of a dual MEK/Aurora kinase inhibitor, BI-847325 anticancer drug, on several cellular and molecular processes involved in cancer progression. METHODS: Human ATC cell lines, C643 and SW1736, were grown in alginate hydrogel and treated with IC50 values of BI-847325. The effect of BI-847325 on inhibition of kinases function of MEK1/2 and Aurora kinase B (AURKB) was evaluated via Western blot analysis of phospho-ERK1/2 and phospho-Histone H3 levels. Sodium/iodide symporter (NIS) and thyroglobulin (Tg), as two thyroid-specific differentiation markers, were measured by qRT-PCR as well as flow cytometry and immunoradiometric assay. Apoptosis was assessed by Annexin V/PI flow cytometry and BIM, NFκB1, and NFκB2 expressions. Cell cycle distribution and proliferation were determined via P16, AURKA, and AURKB expressions as well as PI and CFSE flow cytometry assays. Multidrug resistance was evaluated by examining the expression of MDR1 and MRP1. Angiogenesis and invasion were investigated by VEGF expression and F-actin labeling with Alexa Fluor 549 Phalloidin. RESULTS: Western blot results showed that BI-847325 inhibits MEK1/2 and AURKB functions by decreasing phospho-ERK1/2 and phospho-Histone H3 levels. BI-847325 induced thyroid differentiation markers and apoptosis in ATC cell lines. Inversely, BI-847325 intervention decreased multidrug resistance, cell cycle progression, proliferation, angiogenesis, and invasion at the molecular and/or cellular levels. CONCLUSION: The results of the present study suggest that BI-857,325 might be an effective multi-targeted anticancer drug for ATC treatment.

3.
JMIR Bioinform Biotech ; 3(1): e36100, 2022.
Article in English | MEDLINE | ID: mdl-35891920

ABSTRACT

Background: Since the first appearance of SARS-CoV-2 in China in December 2019, the world witnessed the emergence of the SARS-CoV-2 outbreak. Due to the high transmissibility rate of the virus, there is an urgent need to design and develop vaccines against SARS-CoV-2 to prevent more cases affected by the virus. Objective: A computational approach is proposed for vaccine design against the SARS-CoV-2 spike (S) protein, as the key target for neutralizing antibodies, and envelope (E) protein, which contains a conserved sequence feature. Methods: We used previously reported epitopes of S protein detected experimentally and further identified a collection of predicted B-cell and major histocompatibility (MHC) class II-restricted T-cell epitopes derived from E proteins with an identical match to SARS-CoV-2 E protein. Results: The in silico design of our candidate vaccine against the S and E proteins of SARS-CoV-2 demonstrated a high affinity to MHC class II molecules and effective results in immune response simulations. Conclusions: Based on the results of this study, the multiepitope vaccine designed against the S and E proteins of SARS-CoV-2 may be considered as a new, safe, and efficient approach to combatting the COVID-19 pandemic.

4.
Cancer Cell Int ; 22(1): 61, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35114985

ABSTRACT

Radioiodine (RAI) is the mainstay of treatment for differentiated thyroid carcinoma (DTC) following total thyroidectomy. Nevertheless, about 5% of patients with DTC are RAI-refractory (RAI-R). Understanding the molecular mechanisms associated with DTC during progression towards RAI-R DTC, including thyroid-stimulating hormone levels, may help to explain the pathophysiology of challenging RAI-R DTC clinical cases.

5.
Thyroid Res ; 14(1): 27, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34861882

ABSTRACT

BACKGROUND: Three-dimensional (3D) cell culture methods are identified for simulating the biological microenvironment and demonstrating more similarity to in vivo circumstances. Anaplastic thyroid carcinoma (ATC) is a lethal endocrine malignancy. Despite different treatment approaches, no improvement in the survival rate of the patients has been shown. In this study, we used the 3D in vitro ATC model to investigate the cytotoxic effect of BI-847325 anticancer drug in two-dimensional (2D)- and 3D- cultured cells. METHODS: Human ATC cell lines, C643 and SW1736, were cultured in one percentage (w/v) sodium alginate. Spheroids were incubated in medium for one week. The reproducibility of the fabrication of alginate beads was evaluated. Encapsulation of the cells in alginate was examined by DAPI (4',6-diamidino-2-phenylindole) staining. Survival of alginate-encapsulated cells was evaluated by CFSE (5,6-Carboxyfluorescein N-hydroxysuccinimidyl ester) staining. The population doubling times of C643 and SW1736 cell lines cultured in 2D monolayer as well as in 3D system were calculated. The cytotoxic effect of BI-847325 on 2D- and 3D- cultured cell lines was assessed for 24-72 h by MTT [3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide] assay. Finally, the 3D culture results were compared with the 2D culture method. RESULTS: The half-maximal inhibitory concentration (IC50) values of BI-847325 were higher in 3D culture compared to 2D culture. The cytotoxicity data indicated that 3D in vitro models were more resistant to chemotherapy agents. CONCLUSIONS: The findings of this study are beneficial for developing in vitro ATC 3D models to analyze the efficacy of different chemotherapy drugs and formulations.

6.
J Diabetes Metab Disord ; 20(1): 1081-1084, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34178874

ABSTRACT

Biobanking as an emerging procedure referring to the development of sample storage technologies which provide essential structures for conducting research. This paper presents the experiences and challenges faced while establishing the non-communicable diseases (NCDs)-dedicated biobank at Endocrinology and Metabolism Research Institute (EMRI) in Iran, such as infrastructure, Laboratory Information Management System (LIMS), ethical and legal aspects, sample collection, preservation, and quality control (QC). NCDs are a major health problem around the world and in Iran, which is access to biological samples are required to understanding and planning to these diseases. The main objectives of the EMRI biobank is currently the collection and storage of biological samples such as blood, serum, plasma, urine and DNA from patients with NCDs including diabetes mellitus osteoporosis and elderly population based on cohort and cross-sectional studies. The biobank of EMRI aims to have a major impact on the NCDs by supplying biological samples for national and international research projects.

7.
Am J Physiol Endocrinol Metab ; 320(3): E581-E590, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33427048

ABSTRACT

Current in vitro models have played important roles in improving knowledge and understanding of cellular and molecular biology, but cannot exactly recapitulate the physiology of human tissues such as thyroid. In this article, we conducted a systematic review to present scientific and methodological time-trends of the reconstruction and generation of 3 D functional thyroid follicles and organoids for thyroid research in health and disease. "Web of Science (ISI)", "Scopus", "Embase", "Cochrane Library", and "PubMed" were systematically searched for papers published since 1950 to May 2020 in English language, using the predefined keywords. 212 articles were reviewed and finally 28 papers that met the inclusion and exclusion criteria were selected. Among the evidence for the examination of 3 D cell culture methods in thyroid research, there were only a few studies related to the organoid technology and its potential applications in understanding morphological, histological, and physiological characteristics of the thyroid gland and reconstructing this tissue. Besides, there was no study using organoids to investigate the tumorigenesis process of thyroid. Based on the results of this study, despite all the limitations and controversies, the exciting and promising organoid technology offers researchers a wide range of potential applications for more accurate modeling of thyroid in health and diseases and provides an excellent preclinical in vitro platform. In future, organoid technology can provide a better understanding of the molecular mechanisms of pathogenesis and tumorigenesis of thyroid tissue and more effective treatment for related disorders due to more accurate simulation of the thyroid physiology.


Subject(s)
Cell Culture Techniques/methods , Cell Culture Techniques/trends , Organoids/cytology , Thyroid Gland/cytology , Cell Culture Techniques/history , History, 20th Century , History, 21st Century , Humans , Models, Biological , Regenerative Medicine/history , Regenerative Medicine/methods , Regenerative Medicine/trends
8.
Sci Rep ; 10(1): 21440, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293661

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is the most rare and lethal form of thyroid cancer and requires effective treatment. Efforts have been made to restore sodium-iodide symporter (NIS) expression in ATC cells where it has been downregulated, yet without complete success. Systems biology approaches have been used to simplify complex biological networks. Here, we attempt to find more suitable targets in order to restore NIS expression in ATC cells. We have built a simplified protein interaction network including transcription factors and proteins involved in MAPK, TGFß/SMAD, PI3K/AKT, and TSHR signaling pathways which regulate NIS expression, alongside proteins interacting with them. The network was analyzed, and proteins were ranked based on several centrality indices. Our results suggest that the protein interaction network of NIS expression regulation is modular, and distance-based and information-flow-based centrality indices may be better predictors of important proteins in such networks. We propose that the high-ranked proteins found in our analysis are expected to be more promising targets in attempts to restore NIS expression in ATC cells.


Subject(s)
Gene Regulatory Networks , Symporters/genetics , Systems Biology/methods , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Humans , Mutation , Protein Interaction Maps , Signal Transduction , Symporters/metabolism , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/metabolism
9.
Cancer Cell Int ; 20: 352, 2020.
Article in English | MEDLINE | ID: mdl-32760219

ABSTRACT

BACKGROUND: anaplastic thyroid cancer (ATC) is one of the most lethal and aggressive cancers. Evidence has shown that the tumorigenesis of ATC is a multistep process involving the accumulation of genetic and epigenetic changes. Several studies have suggested that long non-coding RNAs (lncRNAs) may play an important role in the development and progression of ATC. In this article, we have collected the published reports about the role of lncRNAs in ATC. METHODS: "Scopus", "Web of Science", "PubMed", "Embase", etc. were systematically searched for articles published since 1990 to 2020 in English language, using the predefined keywords. RESULTS: 961 papers were reviewed and finally 33 papers which fulfilled the inclusion and exclusion criteria were selected. Based on this systematic review, among a lot of evidences on examining the function of lncRNAs in thyroid cancer, there are only a small number of studies about the role of lncRNAs and their molecular mechanisms in the pathogenesis of ATC. CONCLUSIONS: lncRNAs play a crucial role in regulation of different processes involved in the development and progression of ATC. Currently, just a few lncRNAs have been identified in ATC that may serve as prognosis markers such as GAS5, MIR22HG, and CASC2. Also, because of the dysregulation of Klhl14-AS, HOTAIRM1, and PCA3 during ATC development and progression, they may act as therapeutic targets. However, for most lncRNAs, only a single experiment has evaluated the expression profile in ATC tissues/cells. Therefore, further functional studies and expression profiling is needed to resolve this limitation and identify novel and valid biomarkers.

10.
Res Sq ; 2020 May 20.
Article in English | MEDLINE | ID: mdl-32702713

ABSTRACT

Since the first appearance of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2) in China on December 2019, the world has now witnessed the emergence of the SARS- CoV-2 outbreak. Therefore, due to the high transmissibility rate of virus, there is an urgent need to design and develop vaccines against SARS-CoV-2 to prevent more cases affected by the virus. In this study, a computational approach is proposed for vaccine design against the envelope (E) protein of SARS-CoV-2, which contains a conserved sequence feature. First, we sought to gain potential B-cell and T-cell epitopes for vaccine designing against SARS-CoV-2. Second, we attempted to develop a multi-epitope vaccine. Immune targeting of such epitopes could theoretically provide defense against SARS-CoV-2. Finally, we evaluated the affinity of the vaccine to major histocompatibility complex (MHC) molecules to stimulate the immune system response to this vaccine. We also identified a collection of B-cell and T-cell epitopes derived from E proteins that correspond identically to SARS-CoV-2 E proteins. The in-silico design of our potential vaccine against E protein of SARS-CoV-2 demonstrated a high affinity to MHC molecules, and it can be a candidate to make a protection against this pandemic event.

11.
Trends Endocrinol Metab ; 31(9): 627-630, 2020 09.
Article in English | MEDLINE | ID: mdl-32273149

ABSTRACT

Gut microbiome (GM) might be associated with radioiodine (RAI)-refractory papillary thyroid carcinoma (PTC) through different mechanisms related to sodium/iodide (Na+/I-) symporter (NIS) regulation. However, whether thyroid carcinoma (TC), especially RAI-refractory PTC, causes dysbiosis, or vice versa, is still unknown. Further studies are needed to investigate the mechanism between GM and RAI-refractory PTC.


Subject(s)
Gastrointestinal Microbiome/physiology , Iodine Radioisotopes/analysis , Thyroid Cancer, Papillary/microbiology , Thyroid Cancer, Papillary/physiopathology , Carcinoma, Papillary/genetics , Carcinoma, Papillary/metabolism , Humans , Symporters/genetics , Symporters/metabolism
12.
Endocrinology ; 160(8): 2015-2023, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31271419

ABSTRACT

Anaplastic thyroid cancer (ATC) is an aggressive type of thyroid cancer with a high mortality rate. Cytotoxic drugs are among the treatment modalities usually used for ATC treatment. However, systemic chemotherapies for ATC have not been shown to have remarkable efficacy. ATP-binding cassette (ABC) transporters have been suggested as a possible mechanism in ATC resistance to chemotherapy. This systematic review was aimed to define the possible roles of ABC transporters in ATC resistance to chemotherapy. Numerous databases, including Scopus, Web of Science, PubMed, Cochrane Library, Ovid, ProQuest, and EBSCO, were searched for papers published since 1990, with predefined keywords. The literature searches were updated twice, in 2015 and 2017. All identified articles were reviewed, and 14 papers that met the inclusion criteria were selected. In the eligible studies, the roles of 10 out of 49 ABC transporters were evaluated; among them, three pumps (ABCB1, ABCC1, and ABCG2) were the most studied transporters in ATC samples. ABCC1 and ABCG2 had the highest expression rates in ATC, and ABCB1 ranked second among the inspected transporters. In conclusion, ABC transporters are the major determinants of ATC resistance to chemotherapy. By identifying these transporters, we can tailor the best treatment approach for patients with ATC. Additional studies are needed to define the exact role of each ABC transporter and other mechanisms in ATC drug resistance.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Thyroid Carcinoma, Anaplastic/drug therapy , ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Animals , Drug Resistance, Neoplasm , Humans , Neoplastic Stem Cells/drug effects , Signal Transduction/physiology , Thyroid Carcinoma, Anaplastic/pathology
13.
Daru ; 27(1): 1-7, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31077090

ABSTRACT

BACKGROUND: Anaplastic thyroid carcinoma (ATC) is the most lethal malignancy in thyroid carcinomas. Long non-coding RNAs (lncRNAs) are a member of non-coding RNAs, regulating the expression of gene. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an onco-lncRNA that is overexpressed in several carcinomas including ATC. Evidence showed that MALAT1 has a crucial function in apoptosis, and cell cycle progression. OBJECTIVES: In order to take advantage of 3D cell culture system in cancer investigation, we have used a 3D in vitro ATC model to determine the effect of dual MEK/Aurora kinase inhibitor BI-847325 anticancer drug on the fundamental molecular mechanisms of MALAT1-mediated gene regulation in ATC. METHODS: In this study, ATC cell lines (C643 and SW1736) were grown in alginate scaffold. Encapsulated cells were treated by BI-847325. Changes in expression of MALAT1, Mcl1, miR-363-3p, and cyclinD1 were measured by qRT-PCR. RESULTS AND CONCLUSION: MALAT1 gene expression following BI-847325 treatment was significantly downregulated in C643 and SW1736 cell lines. Reversely, miR-363-3p expression was significantly upregulated by BI-847325 in both ATC cell lines. Mcl1 expression was significantly downregulated after treatment in C643 cell lines. Moreover, the expression of this gene was not significantly reduced following BI-847325 treatment in SW1736 cell line. Additionally, cyclin D1 expression was significantly downregulated after treatment in both ATC cell lines. Altogether, the result of this study was the first report of MALAT1's molecular function in ATC and suggested that BI-847325 which inhibits both MEK and Aurora kinase family could be effective against ATC by regulating the genes involved in cell cycle and apoptosis including MALAT1and its downstream genes. Graphical abstract Schematic representation of the biological role of MALAT1 in cyclin D1, miR-363-3p and Mcl1 gene regulations. Stimulation of receptor tyrosine kinase (RTK) by growth factors (GFs) phosphorylates RAS that subsequently activates RAF. Then, RAF phosphorylates MEK. Consequently, activated MEK phosphorylates ERK downstream effector, leading to the MALAT1 gene expression. MALAT1 is a negative regulator of Mcl1 mRNA by sponging of miR-363-3p. In addition, MALAT1 leads to Axin1 and APC downregulation and Wnt/ß-catenin signaling pathway activation. Stable ß-catenin translocates from the cytoplasm to the nucleus and promotes cyclin D1 gene expression.


Subject(s)
Aniline Compounds/pharmacology , Cell Culture Techniques/methods , Indoles/pharmacology , RNA, Long Noncoding/genetics , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/genetics , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclin D1/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic/drug effects , Humans , MicroRNAs/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics
14.
Acta Med Iran ; 55(3): 200-208, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28282720

ABSTRACT

Personalized medicine is a set of diagnostic, prognostic and therapeutic approaches in which medical interventions are carried out based on individual patient characteristics. As life expectancy increases in developed and developing countries, the incidence of diseases such as cancer goes up among people in the community. Cancer is a disease that the response to treatment varies from one person to another and also it is costly for individuals, families, and society. Among thyroid cancers, anaplastic thyroid carcinoma (ATC) is the most aggressive, lethal and unresponsive form of the disease. Unfortunately, current drugs are not targetable, and therefore they have restricted role in ATC treatment. Consequently, mortality of this cancer, despite advances in the field of diagnosis and treatment, is one of the most important challenges in medicine. Cellular, molecular and genetic evidences play an important role in finding more effective diagnostic and therapeutic approaches. Review of these evidences confirms the application of personalized medicine in cancer treatment including ATC. A growing body of evidence has elucidated that cellular and molecular mechanisms of cancer would pave the way for defining new biomarkers for targeted therapy, taking into account individual differences. It should be noted that this approach requires further progress in the fields of basic sciences, pharmacogenetics and drug design. An overview of the most important aspects in individualized anaplastic thyroid cancer treatment will be discussed in this review.


Subject(s)
Molecular Targeted Therapy/methods , Precision Medicine , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Humans , Signal Transduction/drug effects
15.
Tumour Biol ; 37(1): 1299-308, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26289851

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is the most aggressive malignancy in thyroid cancers. Resistance to current therapies is still a challenge. MicroRNAs are a class of small non-coding RNAs, regulating gene expression. MiR-21 is an oncomiR that is overexpressed in nearly all cancers including ATC. Accumulating evidence suggested that miR-21 has a role in cancer stemness state, apoptosis, cell cycle progression, and differentiation. Therefore, we evaluated the application of Off-miR-21 to sequester the microRNA for therapeutic purposes on ATC cell lines. In this study, C643 and SW1736 were transducted by hsa-miR-21 antagomir (Off-miR-21). PTEN gene expression was performed as a known target of miR-21. Stemness state in cancer stem cells (CSCs) was evaluated by the changes of CSC biomarkers including Oct-4 and ABCG2. Apoptosis was assessed by PDCD4 and Mcl-1 gene expression and flow cytometry. Sodium/iodide symporter (NIS) and thyroglobulin (TG) were measured as ATC differentiation markers. In addition, cell cycle progression was investigated via the alterations of p21 gene expression and flow cytometry. Specific downregulation of miR-21 induced the differentiation and apoptosis in C643 and SW1736. Inversely, the treatment inhibited stemness state and cell cycle progression. Knockdown of miR-21 significantly increased the expression of PDCD4, p21, NIS, and TG while leading to decreased expression of Oct-4, ABCG2, and Mcl-1.Taken together, the results suggest that miR-21, as an oncomiR, has a role not only in stemness state but also in tumor growth, differentiation, and apoptosis. Hence, suppression of miR-21 could pave the way for ATC therapy.


Subject(s)
Apoptosis , MicroRNAs/genetics , Neoplastic Stem Cells/cytology , Oligonucleotides, Antisense/genetics , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/metabolism , Apoptosis Regulatory Proteins/metabolism , Cell Cycle , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Female , Humans , Male , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , RNA-Binding Proteins/metabolism
16.
J Diabetes Metab Disord ; 12(1): 31, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23815851

ABSTRACT

miRNAs are non coding ribonucleic acids which are protected with respect to evolution, and have a length of 18-25 nucleotides. microRNAs control the gene expression after transcription, through mRNA destruction or translation processing, and therefore participate in arrangement of the physiologic and pathologic cellular processes; They also may act as oncogene or tumor suppressors. Altered expression of a number of microRNAs is reported in process of progression and metastasis of thyroid cancers. Therefore, identification of these microRNAs may shed a light to oncogenesis pathway of thyroid cancers and their metastasis. In addition, microRNAs might apply as potential biological markers in diagnosis and treatment of thyroid cancers. The changes made in miRNAs profile of thyroid cancers are reviewed in this paper.

17.
J Diabetes Metab Disord ; 12(1): 32, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23815863

ABSTRACT

Although thyroid cancers are not among common malignancies, they rank as the first prevalent endocrine cancers in human. According to the results of published studies it has been shown the gradual progress from normal to the neoplastic cell in the process of tumor formation is the result of sequential genetic events. Among them we may point the mutations and rearrangements occurred in a group of proto-oncogenes, transcription factors and metastasis elements such as P53, RAS,RET,BRAF, PPARγ and Fascin. In the present article,we reviewed the most important essential genes in thyroid cancers, the role of epithelial mesenchymal transition and Fascin has been highlighted in this paper.

18.
J Diabetes Metab Disord ; 11(1): 14, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-23497697

ABSTRACT

BACKGROUND: Plasma levels of adiponectin which is secreted from adipose tissue are associated with various parameters of metabolic syndrome. This effect seems to be a result of interactions between genetic and environmental factors including central obesity. The present study was carried out to investigate the possibility of relation between single nucleotide polymorphisms of adiponectin gene (+45 T/G and -11391 G/A) and waist circumferences (WC) in patients with type 2 diabetes. METHODS: This cross-sectional study was conducted on n = 238 diabetic patients selected as cases and n = 159 as healthy control who were recruited from Rafsanjan city in south - east of Iran. The possible association of +45 T/G and -11391 G/A adiponectin gene polymorphisms with WC according to age and sex was evaluated. RESULTS: There was no significant difference in distribution of frequencies of +45 T/G and -11391 G/A adiponectin gene polymorphisms in each group. We only found a significant association between -11391 G/A adiponectin gene polymorphism with WC in diabetic group (p = 0.021). This association was remained significant after adjustment in multivariate regression model (p = 0.019, OR: 0.244, 95%CI: 0.075-0.791) and also this effect was independent of sex and age. CONCLUSION: We found higher abdominal obesity in GA or AA carriers of adiponectin - 11391 G/A genotype in type 2 diabetes patients independent of age and sex.

SELECTION OF CITATIONS
SEARCH DETAIL
...