Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 355(2): e2100302, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34796536

ABSTRACT

Novel series of pyrazolo[3,4-b]pyridines 9a-j and 14a-f were prepared via a one-pot three-component reaction. Compounds 9a-j were synthesized by the reaction of 3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-5-amine (4) with benzoyl acetonitriles 3a,b and aldehydes 5a-e, whereas the spiro derivatives 14a-f were synthesized by the reaction of pyrazole derivative 4 with 3a-c and indoline-2,3-diones 10a,b. Screening of the antiproliferative activity of 9a-j and 14a-f revealed that 14a and 14d were the most potent analogues against HepG2 and HeLa cells, with IC50 = 4.2 and 5.9 µM, respectively. Moreover, compounds 9c and 14a could promote cell cycle disturbance and apoptosis in HepG2 cells, as evidenced by DNA flow cytometry and Annexin V-FITC/PI assays. Cell cycle analysis of 9c and 14a indicated a reduction in HepG2 cells in the G1 phase, with arrest in the S phase and the G2/M phase, respectively. Also, 9c and 14a are good apoptotic inducers in the HepG2 cell line. Furthermore, compounds 9h and 14d stood out as the most efficient antiproliferative agents in the NCI 60-cell line panel screening, with mean GI % equal to 60.3% and 55.4%, respectively. Additionally, 9c, 9h, 14a, and 14d showed good inhibitory action against the cellular pathway regulator p38α kinase, with IC50 = 0.42, 0.41, 0.13, and 0.64 µM, respectively. A docking study was carried out on the p38α kinase active site, showing a binding mode comparable to that of reported p38 mitogen-activated protein kinase inhibitors. These newly discovered pyrazolo[3,4-b]pyridines could be considered as potential candidates for the development of newly targeted anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , HeLa Cells , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
2.
Anticancer Agents Med Chem ; 22(11): 2125-2141, 2022.
Article in English | MEDLINE | ID: mdl-34732121

ABSTRACT

BACKGROUND: 1,3-Diones are versatile reagents used for many heterocyclic transformations. Among such groups of compounds, cyclohexane-1,3-dione is widely used in organic synthesis to produce biologically active compounds. OBJECTIVE: In this work, target molecules were synthesized from tetrahydrobenzo[b]thiophen-3- carboxamide derivative with different substituents, and their structure-activity relationships were discussed in detail. METHODS: Cyclohexane-1,3-dione underwent different multi-component reactions to produce fused thiophene, thiazole, coumarin, pyran, and pyridine derivatives. The anti-proliferative activity of the newly synthesized compounds toward the six cancer cell lines, namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 was studied. In addition, inhibitions of the most active compounds toward cancer cell lines classified according to the disease were also studied. Furthermore, Pan Assay Interference compounds (PAINS) of the selected compounds were analyzed, along with the c- Met inhibitions. RESULTS: Anti-proliferative evaluations were performed for all of the synthesized compounds, in which the varieties of substituents through the aryl ring and the heterocyclic ring afforded compounds with high activities. Inhibition activity against the cancer cell lines classified according to the disease, c-Met, and PAINS of the synthesized compounds were measured. CONCLUSION: Compounds 3, 13a, 13b, 14a, 16f, 17a, 28, 30a, and 31were the most cytotoxic compounds toward the six cancer cell lines. Inhibition toward cancer cell lines classified according to the disease showed that, in most cases, the presence of the electronegative CN and or Cl groups within the molecule was responsible for its high activity.


Subject(s)
Antineoplastic Agents , Thiophenes , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Coumarins/pharmacology , Cyclohexanes/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Pyrans/pharmacology , Pyridines/pharmacology , Structure-Activity Relationship , Thiazoles/pharmacology , Thiophenes/pharmacology
3.
Future Med Chem ; 11(18): 2395-2414, 2019 09.
Article in English | MEDLINE | ID: mdl-31544523

ABSTRACT

Aim: Due to emergence of resistance to available anticancer agents, there is a need to search for new cytotoxic agents. Methods: Pyrido[2,3-d]pyrimidines (4-6) and their tricyclic derivatives (7-13) were prepared and screened for their cytotoxicity against breast MCF-7, prostate PC-3 and lung A-549 cancer cell lines as well as normal fibroblasts WI-38. Results: The most active compounds were 6b, 6e and 8d compared with doxorubicin. Moreover, compounds 6b and 8d induced apoptosis in PC-3 and MCF-7, respectively via activation of CASP3 (in PC-3 only), Bax, p53 and down regulation of Bcl2 in addition to CDK4/6 inhibition. Conclusion: Pyrido[2,3-d]pyrimidine represents an important core for discovery of new potent cytotoxic agents acting on the cell cycle via apoptosis induction through either intrinsic or extrinsic pathways.


Subject(s)
Antineoplastic Agents/pharmacology , Caspase 3/metabolism , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
4.
Bioorg Chem ; 83: 186-197, 2019 03.
Article in English | MEDLINE | ID: mdl-30380447

ABSTRACT

Quinoline derivatives 2, 3, quinolinyl based pyrazolines 4a,b, 5 and quinolinyl pyrazolinyl thiazole hybrids 6a-d, 7a-c and 8a-d were synthesized and screened for their anti-proliferative activity against MCF-7, HeLa and DLD1 cancer cell lines as well as normal fibroblast WI-38. Most of the tested compounds showed promising anticancer activity in addition to their safety towards the normal cell line. Eight compounds eliciting superior cytotoxicity against DLD1 and safe to the normal cell line 2, 3, 5, 6a, 6b, 7b, 7c and 8a were evaluated for their efficacy as EGFR inhibitors. They revealed inhibitory activity at nanomolar level especially compounds 6b, 2 and 7c with IC50 (31.80, 37.07 and 42.52 nM) in comparison to Gefitinib (IC50 = 29.16 nM).


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Quinolines/pharmacology , Thiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship , Thiazoles/chemistry
5.
Bioorg Chem ; 83: 402-413, 2019 03.
Article in English | MEDLINE | ID: mdl-30415021

ABSTRACT

Heterocyclization of steroids were reported to give biologically active products where ring D modification occured. Estrone (1) was used as a template to develop new heterocyclic compounds. Ring D modification of 1 through its reaction with cyanoacetylhydrazine and elemental sulfur gave the thiophene derivative 3. The latter compound reacted with acetophenone derivatives 4a-c to give the hydrazide-hydrazone derivatives 5a-c, respectively. In addition, compound 3 formed thiazole derivatives through its first reaction with phenylisothiocyanate to give the thiourea derivative 9 followed by the reaction of the later with α-halocarbonyl compounds. In the present work a series of novel estrone derivatives were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase, and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). The most promising compounds 5b, 5c, 11a, 13c, 15b, 15c, 15d, 17a and 17b were further investigated against the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR. Compounds 5b, 15d, 17a and 17b were selected to examine their Pim-1 kinase inhibition activity where compounds 15d and 17b showed high activities. Molecular docking of some of the most potent compounds was demonstrated.


Subject(s)
Estrone/analogs & derivatives , Estrone/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Thiophenes/pharmacology , Anilides/chemistry , Anilides/pharmacology , Animals , Artemia/drug effects , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Estrone/chemical synthesis , Estrone/toxicity , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/toxicity , Proto-Oncogene Proteins c-pim-1/chemistry , Quinolines/chemistry , Quinolines/pharmacology , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...