Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(34): 7697-7702, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37606508

ABSTRACT

Liquid diodes are surface structures that facilitate the spontaneous flow of liquids in a specific direction. In nature, they are used to increase water collection and uptake, reproduction, and feeding. However, large networks with directional properties are exceptional and are typically limited up to a few centimeters. Here, we simulate, design, and 3D print liquid diode networks consisting of hundreds of unit cells. We provide structural and wettability guidelines for directional transport of liquids through these networks and introduce percolation theory in order to identify the threshold between a connected network, which allows fluid to reach specific points, and a disconnected network. By constructing well-defined networks with uni- and bidirectional pathways, we experimentally demonstrate the applicability of models describing isotropically directed percolation. We accurately predict the network permeability and the liquid final state. These guidelines are highly promising for the development of structures for spontaneous, yet predictable, directional liquid transport.

2.
ACS Appl Mater Interfaces ; 14(7): 9855-9863, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35080367

ABSTRACT

Various insects can entrap and stabilize air plastrons and bubbles underwater. When these bubbles interact with surfaces underwater, they create air capillary bridges that de-wet surfaces and even allow underwater reversible adhesion. In this study, a robotic arm with interchangeable three-dimensional (3D)-printed bubble-stabilizing units is used to create air capillary bridges underwater for manipulation of small objects. Particles of various sizes and shapes, thin sheets and substrates of diverse surface tensions, from hydrophilic to superhydrophobic, can be lifted, transported, placed, and oriented using one- or two-dimensional arrays of bubbles. Underwater adhesion, derived from the air capillary bridges, is quantified depending on the number, arrangement, and size of bubbles and the contact angle of the counter surface. This includes a variety of commercially available materials and chemically modified surfaces. Overall, it is possible to manipulate millimeter- to sub-millimeter-scale objects underwater. This includes cleaning submerged surfaces from colloids and arbitrary contaminations, folding thin sheets to create three-dimensional structures, and precisely placing and aligning objects of various geometries. The robotic underwater manipulator can be used for automation and control in cell culture experiments, lab-on-chip devices, and manipulation of objects underwater. It offers the ability to control the transport and release of small objects without the need for chemical adhesives, suction-based adhesion, anchoring devices, or grabbers.

SELECTION OF CITATIONS
SEARCH DETAIL
...