Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Med Chem ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687966

ABSTRACT

Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug-drug interactions upon single-agent use of PF-07817883.

2.
J Med Chem ; 66(5): 3195-3211, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36802610

ABSTRACT

The melanocortin-4 receptor (MC4R) is a centrally expressed, class A GPCR that plays a key role in the regulation of appetite and food intake. Deficiencies in MC4R signaling result in hyperphagia and increased body mass in humans. Antagonism of MC4R signaling has the potential to mitigate decreased appetite and body weight loss in the setting of anorexia or cachexia due to underlying disease. Herein, we report on the identification of a series of orally bioavailable, small-molecule MC4R antagonists using a focused hit identification effort and the optimization of these antagonists to provide clinical candidate 23. Introduction of a spirocyclic conformational constraint allowed for simultaneous optimization of MC4R potency and ADME attributes while avoiding the production of hERG active metabolites observed in early series leads. Compound 23 is a potent and selective MC4R antagonist with robust efficacy in an aged rat model of cachexia and has progressed into clinical trials.


Subject(s)
Appetite , Receptor, Melanocortin, Type 4 , Rats , Humans , Animals , Cachexia/drug therapy , Anorexia/drug therapy , Molecular Conformation
3.
Science ; 374(6575): 1586-1593, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34726479

ABSTRACT

The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.


Subject(s)
COVID-19 Drug Treatment , Lactams/pharmacology , Lactams/therapeutic use , Leucine/pharmacology , Leucine/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/pharmacology , Proline/therapeutic use , SARS-CoV-2/drug effects , Viral Protease Inhibitors/pharmacology , Viral Protease Inhibitors/therapeutic use , Administration, Oral , Animals , COVID-19/virology , Clinical Trials, Phase I as Topic , Coronavirus/drug effects , Disease Models, Animal , Drug Therapy, Combination , Humans , Lactams/administration & dosage , Lactams/pharmacokinetics , Leucine/administration & dosage , Leucine/pharmacokinetics , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Nitriles/administration & dosage , Nitriles/pharmacokinetics , Proline/administration & dosage , Proline/pharmacokinetics , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , Ritonavir/therapeutic use , SARS-CoV-2/physiology , Viral Protease Inhibitors/administration & dosage , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
4.
ACS Med Chem Lett ; 9(5): 440-445, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29795756

ABSTRACT

Sodium-phosphate cotransporter 2a, or NaPi2a (SLC34A1), is a solute-carrier (SLC) transporter located in the kidney proximal tubule that reabsorbs glomerular-filtered phosphate. Inhibition of NaPi2a may enhance urinary phosphate excretion and correct maladaptive mineral and hormonal derangements associated with increased cardiovascular risk in chronic kidney disease-mineral and bone disorder (CKD-MBD). To date, only nonselective NaPi inhibitors have been described. Herein, we detail the discovery of the first series of selective NaPi2a inhibitors, resulting from optimization of a high-throughput screening hit. The oral PK profile of inhibitor PF-06869206 (6f) in rodents allows for the exploration of the pharmacology of selective NaPi2a inhibition.

5.
ACS Med Chem Lett ; 9(2): 125-130, 2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29456800

ABSTRACT

Inhibitors of the renal outer medullary potassium channel (ROMK) show promise as novel mechanism diuretics, with potentially lower risk of diuretic-induced hypokalemia relative to current thiazide and loop diuretics. Here, we report the identification of a novel series of 3-sulfamoylbenzamide ROMK inhibitors. Starting from HTS hit 4, this series was optimized to provide ROMK inhibitors with good in vitro potencies and well-balanced ADME profiles. In contrast to previously reported small-molecule ROMK inhibitors, members of this series were demonstrated to be highly selective for inhibition of human over rat ROMK and to be insensitive to the N171D pore mutation that abolishes inhibitory activity of previously reported ROMK inhibitors.

6.
J Med Chem ; 61(3): 1086-1097, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29300474

ABSTRACT

A novel series of morpholine-based nonsteroidal mineralocorticoid receptor antagonists is reported. Starting from a pyrrolidine HTS hit 9 that possessed modest potency but excellect selectivity versus related nuclear hormone receptors, a series of libraries led to identification of morpholine lead 10. After further optimization, cis disubstituted morpholine 22 was discovered, which showed a 45-fold boost in binding affinity and corresponding functional potency compared to 13. While 22 had high clearance in rat, it provided sufficient exposure at high doses to favorably assess in vivo efficacy (increased urinary Na+/K+ ratio) and safety. In contrast to rat, the dog and human MetID and PK profiles of 22 were adequate, suggesting that it could be suitable as a potential clinical asset.


Subject(s)
Mineralocorticoid Receptor Antagonists/chemistry , Mineralocorticoid Receptor Antagonists/pharmacology , Morpholinos/chemistry , Morpholinos/pharmacology , Oxazines/chemistry , Receptors, Mineralocorticoid/metabolism , Animals , Clinical Trials, Phase I as Topic , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Models, Molecular , Protein Conformation , Rats , Rats, Wistar , Receptors, Mineralocorticoid/chemistry , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 25(19): 4057-64, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26271588

ABSTRACT

The endocrine hormone glucagon stimulates hepatic glucose output via its action at the glucagon receptor (GCGr) in the liver. In the diabetic state, dysregulation of glucagon secretion contributes to abnormally elevated hepatic glucose output. The inhibition of glucagon-induced hepatic glucose output via antagonism of the GCGr using small-molecule ligands is a promising mechanism for improving glycemic control in the diabetic state. Clinical data evaluating the therapeutic potential of small-molecule GCGr antagonists is currently emerging. Recently disclosed clinical data demonstrates the potential efficacy and possible therapeutic limitations of small-molecule GCGr antagonists. Recent pre-clinical work on the development of GCGr antagonists is also summarized.


Subject(s)
Receptors, Glucagon/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Molecular Structure , Small Molecule Libraries/chemistry , Structure-Activity Relationship
8.
J Med Chem ; 57(10): 4273-88, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24738581

ABSTRACT

A novel series of nonsteroidal mineralocorticoid receptor (MR) antagonists identified as part of our strategy to follow up on the clinical candidate PF-03882845 (2) is reported. Optimization departed from the previously described pyrazoline 3a and focused on improving the selectivity for MR versus the progesterone receptor (PR) as an approach to avoid potential sex-hormone-related adverse effects and improving biopharmaceutical properties. From this effort, (R)-14c was identified as a potent nonsteroidal MR antagonist (IC50 = 4.5 nM) with higher than 500-fold selectivity versus PR and other related nuclear hormone receptors, with improved solubility as compared to 2 and pharmacokinetic properties suitable for oral administration. (R)-14c was evaluated in vivo using the increase of urinary Na(+)/K(+) ratio in rat as a mechanism biomarker of MR antagonism. Treatment with (R)-14c by oral administration resulted in significant increases in urinary Na(+)/K(+) ratio and demonstrated this novel compound acts as an MR antagonist.


Subject(s)
Mineralocorticoid Receptor Antagonists/chemical synthesis , Nicotinic Acids/chemical synthesis , Pyrazoles/chemical synthesis , Animals , Drug Discovery , Male , Mineralocorticoid Receptor Antagonists/pharmacology , Molecular Docking Simulation , Nicotinic Acids/pharmacology , Potassium/urine , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Mineralocorticoid/chemistry , Sodium/urine , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 24(3): 839-44, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24418771

ABSTRACT

Identification of orally active, small molecule antagonists of the glucagon receptor represents a novel treatment paradigm for the management of type 2 diabetes mellitus. The present work discloses novel glucagon receptor antagonists, identified via conformational constraint of current existing literature antagonists. Optimization of lipophilic ligand efficiency (LLE or LipE) culminated in enantiomers (+)-trans-26 and (-)-trans-27 which exhibit good physicochemical and in vitro drug metabolism profiles. In vivo, significant pharmacokinetic differences were noted with the two enantiomers, which were primarily driven through differences in clearance rates. Enantioselective oxidation by cytochrome P450 was ruled out as a causative factor for pharmacokinetic differences.


Subject(s)
Benzamides/chemistry , Pyrimidines/chemistry , Receptors, Glucagon/antagonists & inhibitors , Administration, Intravenous , Administration, Oral , Animals , Benzamides/pharmacokinetics , Benzamides/pharmacology , Cells, Cultured , Dogs , Ligands , Molecular Conformation , Molecular Structure , Oxidation-Reduction , Protein Binding/drug effects , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Rats, Wistar , Stereoisomerism
10.
Bioorg Med Chem Lett ; 24(2): 425-9, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24373722

ABSTRACT

There is a renewed interest in the role of adipose tissue in energy utilization and thermogenesis and its potential application in the treatment of metabolic disorders such as obesity and diabetes. The last few years have seen the identification of brown adipose tissue capable of metabolic activation in adult humans, the possibility of recruiting 'beige' adipocytes to increase energy expenditure, and the implication of molecules such as FGF21 and irisin in inducing increases in energy expenditure in adipose tissue. The translation of these findings into human trials to deliver safe, efficacious medicines remains a challenge.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Energy Metabolism/physiology , Thermogenesis/physiology , Adipocytes/drug effects , Adipose Tissue/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Energy Metabolism/drug effects , Humans , Thermogenesis/drug effects
11.
Bioorg Med Chem Lett ; 23(23): 6239-42, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24157365

ABSTRACT

Hit-to-lead medicinal chemistry efforts are described starting from a screening hit 1, leading to a new class of aryl sulfonamide-based MR antagonist, exemplified by 17, that possesses favourable MR binding affinity, selectivity profile against closely related NHRs, physicochemical properties and metabolic stability.


Subject(s)
Mineralocorticoid Receptor Antagonists/chemistry , Mineralocorticoid Receptor Antagonists/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Humans , Mineralocorticoid Receptor Antagonists/chemical synthesis , Models, Molecular , Structure-Activity Relationship , Sulfonamides/chemical synthesis
12.
Bioorg Med Chem Lett ; 23(10): 3051-8, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23562063

ABSTRACT

A novel and potent small molecule glucagon receptor antagonist for the treatment of diabetes mellitus is reported. This candidate, (S)-3-[4-(1-{3,5-dimethyl-4-[4-(trifluoromethyl)-1H-pyrazol-1-yl]phenoxy}butyl)benzamido]propanoic acid, has lower molecular weight and lipophilicity than historical glucagon receptor antagonists, resulting in excellent selectivity in broad-panel screening, lower cytotoxicity, and excellent overall in vivo safety in early pre-clinical testing. Additionally, it displays low in vivo clearance and excellent oral bioavailability in both rats and dogs. In a rat glucagon challenge model, it was shown to reduce the glucagon-elicited glucose excursion in a dose-dependent manner and at a concentration consistent with its rat in vitro potency. Its properties make it an excellent candidate for further investigation.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drug Design , Propionates/pharmacology , Receptors, Glucagon/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Chemistry, Physical , Dogs , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Haplorhini , Humans , Liver/cytology , Mice , Molecular Structure , Propionates/administration & dosage , Propionates/chemical synthesis , Rats , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 22(23): 7100-5, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23089526

ABSTRACT

Glucokinase activators represent a promising potential treatment for patients with Type 2 diabetes. Herein, we report the identification and optimization of a series of novel indazole and pyrazolopyridine based activators leading to the identification of 4-(6-(azetidine-1-carbonyl)-5-fluoropyridin-3-yloxy)-2-ethyl-N-(5-methylpyrazin-2-yl)-2H-indazole-6-carboxamide (42) as a potent activator with favorable preclinical pharmacokinetic properties and in vivo efficacy.


Subject(s)
Drug Design , Glucokinase/chemistry , Hypoglycemic Agents/chemical synthesis , Indazoles/chemistry , Pyrazines/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemistry , Administration, Oral , Animals , Cell Line, Tumor , Diabetes Mellitus, Type 2/drug therapy , Glucokinase/metabolism , Glucose Tolerance Test , Half-Life , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Indazoles/chemical synthesis , Indazoles/pharmacokinetics , Indazoles/therapeutic use , Insulin/metabolism , Kinetics , Protein Binding , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 22(1): 415-20, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22119466

ABSTRACT

A novel series of glucagon receptor antagonists has been discovered. These pyrazole ethers and aminopyrazoles have lower molecular weight and increased polarity such that the molecules fall into better drug-like property space. This work has culminated in compounds 44 and 50 that were shown to have good pharmacokinetic attributes in dog, in contrast to rats, in which clearance was high; and compound 49, which demonstrated a dose-dependent reduction in glucose excursion in a rat glucagon challenge experiment.


Subject(s)
Diabetes Mellitus/drug therapy , Pyrazoles/chemistry , Receptors, Glucagon/antagonists & inhibitors , Animals , Chemistry, Pharmaceutical/methods , Dogs , Dose-Response Relationship, Drug , Drug Design , Ether/chemistry , Glucagon/chemistry , Glucose/chemistry , Humans , Kinetics , Models, Chemical , Molecular Weight , Rats , Temperature
15.
J Cell Sci ; 124(Pt 14): 2466-77, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21693583

ABSTRACT

Fission yeast myosin-I (Myo1p) not only associates with calmodulin, but also employs a second light chain called Cam2p. cam2Δ cells exhibit defects in cell polarity and growth consistent with a loss of Myo1p function. Loss of Cam2p leads to a reduction in Myo1p levels at endocytic patches and a 50% drop in the rates of Myo1p-driven actin filament motility. Thus, Cam2p plays a significant role in Myo1p function. However, further studies indicated the existence of an additional Cam2p-binding partner. Cam2p was still present at cortical patches in myo1Δ cells (or in myo1-IQ2 mutants, which lack an intact Cam2p-binding motif), whereas a cam2 null (cam2Δ) suppressed cytokinesis defects of an essential light chain (ELC) mutant known to be impaired in binding to PI 4-kinase (Pik1p). Binding studies revealed that Cam2p and the ELC compete for Pik1p. Cortical localization of Cam2p in the myo1Δ background relied on its association with Pik1p, whereas overexpression studies indicated that Cam2p, in turn, contributes to Pik1p function. The fact that the Myo1p-associated defects of a cam2Δ mutant are more potent than those of a myo1-IQ2 mutant suggests that myosin light chains can contribute to actomyosin function both directly and indirectly (via phospholipid synthesis at sites of polarized growth).


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Calmodulin/metabolism , Myosin Type I/metabolism , Schizosaccharomyces/metabolism , 1-Phosphatidylinositol 4-Kinase/genetics , Calmodulin/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , Myosin Type I/genetics , Schizosaccharomyces/genetics
16.
Curr Biol ; 20(16): 1423-31, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20705471

ABSTRACT

BACKGROUND: Fission yeast possesses three unconventional myosins: Myo1p (a class I myosin that functions at endocytic actin patches) and Myo51p and Myo52p (class V myosins that function at contractile rings and actin cables, respectively). Here we used a combination of in vivo and in vitro approaches to investigate how changes in the actin track influence the motor activity and spatial regulation of these myosins. RESULTS: We optimized the isolation of Myo1p, Myo51p, and Myo52p. All three myosins exhibited robust motor activity in ATPase and actin filament gliding assays. However, decoration of actin with tropomyosin differentially regulates the activity of these motors. Tropomyosin inhibits Myo1p by blocking its ability to form productive associations with actin filaments, whereas tropomyosin increases the actin affinity and ATPase activity of Myo51p and Myo52p. The actin filament crosslinking protein fimbrin rescues Myo1p motor activity by displacing tropomyosin from actin filaments. Consistent with our in vitro findings, fimbrin and tropomyosin have opposing effects on Myo1p function at actin patches. Defects in tropomyosin function led to shorter Myo1p patch lifetimes, whereas loss of fimbrin extended Myo1p lifetimes. Furthermore, defects in tropomyosin function decreased the efficiency of Myo52p-directed motility along actin cables in the cell. CONCLUSION: Tropomyosin promotes myosin-V motility along actin cables. Accumulation of fimbrin at actin patches relieves Myo1p from tropomyosin-mediated inhibition, ensuring maximal myosin-I motor activity at these sites. Thus, spatial regulation of myosin motor function is in part controlled by specific changes in the composition of the actin track.


Subject(s)
Myosin Heavy Chains/physiology , Myosins/physiology , Schizosaccharomyces pombe Proteins/physiology , Schizosaccharomyces/metabolism , Actin Cytoskeleton/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/physiology , Endocytosis/physiology , Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Myosin Heavy Chains/metabolism , Myosins/metabolism , Protein Transport/physiology , Schizosaccharomyces/cytology , Schizosaccharomyces/ultrastructure , Schizosaccharomyces pombe Proteins/metabolism , Tropomyosin/metabolism , Tropomyosin/physiology
17.
Org Lett ; 12(10): 2306-9, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20426400

ABSTRACT

A versatile method for the synthesis of 3,3-diaryloxindoles via Pd-catalyzed alpha-arylations or an S(N)Ar reaction is described. The reaction proceeds using mild base, is tolerant of a variety of functional groups, and is capable of preparing hindered all-carbon quaternary centers.


Subject(s)
Indoles/chemical synthesis , Catalysis , Indoles/chemistry , Molecular Structure , Organometallic Compounds/chemistry , Palladium/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...