Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 14(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38921481

ABSTRACT

It was pointed out to us that we had not followed exactly the IROA TruQuant IQQ Workflow Kit protocol in the experimental part of our work [...].

2.
Metabolites ; 12(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36005614

ABSTRACT

Metabolic fingerprinting by mass spectrometry aims at the comprehensive, semiquantitative analysis of metabolites. Isotope dilution, if successfully implemented, may provide a more reliable, relative quantification. Therefore, the 13C labeled yeast extract of the IROA TruQuant kit was added as an internal standard (IS) to human urine samples measured in full-scan mode on a high-performance liquid chromatography-time-of-flight mass spectrometer (HPLC-TOFMS) system. The isotope ratio approach enabled the analysis of 112 metabolites. The correlation with reference data did not improve significantly using 12C/13C ratios compared to absolute 12C peak areas. Moreover, using an intricate 13C-labeled standard increased the complexity of the mass spectra, which made correct signal annotation more challenging. On the positive side, the ratio approach helps to reduce batch effects, but it does not perform better than computational methods such as the "removebatcheffect" function in the R package Limma.

3.
Metabolites ; 12(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35208236

ABSTRACT

Due to organ shortage and rising life expectancy the age of organ donors and recipients is increasing. Reliable biomarkers of organ quality that predict successful long-term transplantation outcomes are poorly defined. The aim of this study was the identification of age-related markers of kidney function that might accurately reflect donor organ quality. Histomorphometric, biochemical and molecular parameters were measured in young (3-month-old) and old (24-month-old) male Sprague Dawley rats. In addition to conventional methods, we used urine metabolomics by NMR spectroscopy and gene expression analysis by quantitative RT-PCR to identify markers of ageing relevant to allograft survival. Beside known markers of kidney ageing like albuminuria, changes in the concentration of urine metabolites such as trimethylamine-N-oxide, trigonelline, 2-oxoglutarate, citrate, hippurate, glutamine, acetoacetate, valine and 1-methyl-histidine were identified in association with ageing. In addition, expression of several genes of the toll-like receptor (TLR) pathway, known for their implication in inflammaging, were upregulated in the kidneys of old rats. This study led to the identification of age-related markers of biological allograft age potentially relevant for allograft survival in the future. Among those, urine metabolites and markers of immunity and inflammation, which are highly relevant to immunosuppression in transplant recipients, are promising and deserve further investigation in humans.

4.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360651

ABSTRACT

Cold Atmospheric Plasma (CAP) is an ionized gas near room temperature. Its anti-tumor effect can be transmitted either by direct treatment or mediated by a plasma-treated solution (PTS), such as treated standard cell culture medium, which contains different amino acids, inorganic salts, vitamins and other substances. Despite extensive research, the active components in PTS and its molecular or cellular mechanisms are not yet fully understood. The purpose of this study was the measurement of the reactive species in PTS and their effect on tumor cells using different plasma modes and treatment durations. The PTS analysis yielded mode- and dose-dependent differences in the production of reactive oxygen and nitrogen species (RONS), and in the decomposition and modification of the amino acids Tyrosine (Tyr) and Tryptophan (Trp). The Trp metabolites Formylkynurenine (FKyn) and Kynurenine (Kyn) were produced in PTS with the 4 kHz (oxygen) mode, inducing apoptosis in Mel Im melanoma cells. Nitrated derivatives of Trp and Tyr were formed in the 8 kHz (nitrogen) mode, elevating the p16 mRNA expression and senescence-associated ß-Galactosidase staining. In conclusion, the plasma mode has a strong impact on the composition of the active components in PTS and affects its anti-tumor mechanism. These findings are of decisive importance for the development of plasma devices and the effectiveness of tumor treatment.


Subject(s)
Melanocytes/drug effects , Melanoma/drug therapy , Plasma Gases/pharmacology , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Tryptophan/metabolism , Tyrosine/metabolism , Apoptosis , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Humans , Melanocytes/metabolism , Melanoma/metabolism , Melanoma/pathology , Tryptophan/chemistry , Tyrosine/chemistry
5.
Metabolites ; 10(11)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171777

ABSTRACT

The spectral resolution of 2D 1H-13C heteronuclear single quantum coherence (1H-13C-HSQC) nuclear magnetic resonance (NMR) spectra facilitates both metabolite identification and quantification in nuclear magnetic resonance-based metabolomics. However, quantification is complicated by variations in magnetization transfer, which among others originate mainly from scalar coupling differences. Methods that compensate for variation in scalar coupling include the generation of calibration factors for individual signals or the use of additional pulse sequence schemes such as quantitative HSQC (Q-HSQC) that suppress the JCH-dependence by modulating the polarization transfer delays of HSQC or, additionally, employ a pure-shift homodecoupling approach in the 1H dimension, such as Quantitative, Perfected and Pure Shifted HSQC (QUIPU-HSQC). To test the quantitative accuracy of these three methods, employing a 600 MHz NMR spectrometer equipped with a helium cooled cryoprobe, a Latin-square design that covered the physiological concentration ranges of 10 metabolites was used. The results show the suitability of all three methods for the quantification of highly abundant metabolites. However, the substantially increased residual water signal observed in QUIPU-HSQC spectra impeded the quantification of low abundant metabolites located near the residual water signal, thus limiting its utility in high-throughput metabolite fingerprinting studies.

6.
Cancers (Basel) ; 12(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212941

ABSTRACT

Isocitrate dehydrogenase (IDH)-1 mutation is an important prognostic factor and a potential therapeutic target in glioma. Immunohistological and molecular diagnosis of IDH mutation status is invasive. To avoid tumor biopsy, dedicated spectroscopic techniques have been proposed to detect D-2-hydroxyglutarate (2-HG), the main metabolite of IDH, directly in vivo. However, these methods are technically challenging and not broadly available. Therefore, we explored the use of machine learning for the non-invasive, inexpensive and fast diagnosis of IDH status in standard 1H-magnetic resonance spectroscopy (1H-MRS). To this end, 30 of 34 consecutive patients with known or suspected glioma WHO grade II-IV were subjected to metabolic positron emission tomography (PET) imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) for optimized voxel placement in 1H-MRS. Routine 1H-magnetic resonance (1H-MR) spectra of tumor and contralateral healthy brain regions were acquired on a 3 Tesla magnetic resonance (3T-MR) scanner, prior to surgical tumor resection and molecular analysis of IDH status. Since 2-HG spectral signals were too overlapped for reliable discrimination of IDH mutated (IDHmut) and IDH wild-type (IDHwt) glioma, we used a nested cross-validation approach, whereby we trained a linear support vector machine (SVM) on the complete spectral information of the 1H-MRS data to predict IDH status. Using this approach, we predicted IDH status with an accuracy of 88.2%, a sensitivity of 95.5% (95% CI, 77.2-99.9%) and a specificity of 75.0% (95% CI, 42.9-94.5%), respectively. The area under the curve (AUC) amounted to 0.83. Subsequent ex vivo 1H-nuclear magnetic resonance (1H-NMR) measurements performed on metabolite extracts of resected tumor material (eight specimens) revealed myo-inositol (M-ins) and glycine (Gly) to be the major discriminators of IDH status. We conclude that our approach allows a reliable, non-invasive, fast and cost-effective prediction of IDH status in a standard clinical setting.

7.
J Proteome Res ; 18(4): 1796-1805, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30817158

ABSTRACT

Identification of chronic kidney disease patients at risk of progressing to end-stage renal disease (ESRD) is essential for treatment decision-making and clinical trial design. Here, we explored whether proton nuclear magnetic resonance (NMR) spectroscopy of blood plasma improves the currently best performing kidney failure risk equation, the so-called Tangri score. Our study cohort comprised 4640 participants from the German Chronic Kidney Disease (GCKD) study, of whom 185 (3.99%) progressed over a mean observation time of 3.70 ± 0.88 years to ESRD requiring either dialysis or transplantation. The original four-variable Tangri risk equation yielded a C statistic of 0.863 (95% CI, 0.831-0.900). Upon inclusion of NMR features by state-of-the-art machine learning methods, the C statistic improved to 0.875 (95% CI, 0.850-0.911), thereby outperforming the Tangri score in 94 out of 100 subsampling rounds. Of the 24 NMR features included in the model, creatinine, high-density lipoprotein, valine, acetyl groups of glycoproteins, and Ca2+-EDTA carried the highest weights. In conclusion, proton NMR-based plasma fingerprinting improved markedly the detection of patients at risk of developing ESRD, thus enabling enhanced patient treatment.


Subject(s)
Kidney Transplantation/statistics & numerical data , Metabolome/physiology , Metabolomics/methods , Renal Dialysis/statistics & numerical data , Renal Insufficiency, Chronic , Aged , Female , Humans , Male , Middle Aged , Models, Statistical , Predictive Value of Tests , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/therapy , Risk Assessment
8.
J Proteome Res ; 16(4): 1784-1796, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28294621

ABSTRACT

The high reliability of NMR spectroscopy makes it an ideal tool for large-scale metabolomic studies. However, the complexity of biofluids and, in particular, the presence of macromolecules poses a significant challenge. Ultrafiltration and protein precipitation are established means of deproteinization and recovery of free or total metabolite content, but neither is ever complete. In addition, aside from cost and labor, all deproteinization methods constitute an additional source of experimental variation. The Carr-Purcell-Meiboom-Gill (CPMG) echo-train acquisition of NMR spectra obviates the need for prior deproteinization by attenuating signals from macromolecules, but concentration values of metabolites measured in blood plasma will not necessarily reflect total or free metabolite content. Here, in contrast to approaches that propose the determination of individual T1 and T2 relaxation times for the computation of correction factors, we demonstrate their determination by spike-in experiments with known amounts of metabolites in pooled samples of the matrix of interest to facilitate the measurement of total metabolite content. Provided that the protein content does not vary too much among individual samples, accurate quantitation of metabolites is feasible. Moreover, samples with significantly deviating protein content may be readily recognized by inclusion of a standard that shows moderate protein binding. It is also shown that urinary proteins when present in high concentrations may effect detection of common urinary metabolites prone to strong protein binding such as tryptophan.


Subject(s)
Blood Proteins/isolation & purification , Magnetic Resonance Spectroscopy , Metabolome/genetics , Metabolomics , Blood Proteins/chemistry , Blood Proteins/genetics , Chromatography, Liquid , Protein Binding , Tandem Mass Spectrometry
9.
J Proteome Res ; 14(8): 3217-28, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26147738

ABSTRACT

Data normalization is an essential step in NMR-based metabolomics. Conducted properly, it improves data quality and removes unwanted biases. The choice of the appropriate normalization method is critical and depends on the inherent properties of the data set in question. In particular, the presence of unbalanced metabolic regulation, where the different specimens and cohorts under investigation do not contain approximately equal shares of up- and down-regulated features, may strongly influence data normalization. Here, we demonstrate the suitability of the Shapiro-Wilk test to detect such unbalanced regulation. Next, employing a Latin-square design consisting of eight metabolites spiked into a urine specimen at eight different known concentrations, we show that commonly used normalization and scaling methods fail to retrieve true metabolite concentrations in the presence of increasing amounts of glucose added to simulate unbalanced regulation. However, by learning the normalization parameters on a subset of nonregulated features only, Linear Baseline Normalization, Probabilistic Quotient Normalization, and Variance Stabilization Normalization were found to account well for different dilutions of the samples without distorting the true spike-in levels even in the presence of marked unbalanced metabolic regulation. Finally, the methods described were applied successfully to a real world example of unbalanced regulation, namely, a set of plasma specimens collected from patients with and without acute kidney injury after cardiac surgery with cardiopulmonary bypass use.


Subject(s)
Biometry/methods , Metabolome , Metabolomics/methods , Proton Magnetic Resonance Spectroscopy/methods , Acute Kidney Injury/blood , Acute Kidney Injury/metabolism , Algorithms , Cardiopulmonary Bypass , Humans , Probability , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...