Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4465, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932172

ABSTRACT

Industrial activity results in ton-scale production of calcium carbide and generation of a significant amount of calcium carbide residue (CCR), which is often disposed of in the environment as waste. CCR is an active chemical, and rain washes away alkali from sludge, changing the pH of soils and water and damaging the environment. In this work, we explored new opportunities for the utilization of CCR in view of the coming industrial uptake of digital design and additive technologies. Amazingly, CCR can be successfully used as a filler for the modification of 3D printed materials towards the introduction of hybrid organic/inorganic frameworks. A series of commercially available plastics (PLA, ABS, Nylon, PETG, SBS) were successfully used as matrices for CCR-based composite production with high CCR contents up to 28%. Tensile analyses showed increases in tensile strength and Young's modulus of 9% and 60%, respectively. Moreover, in comparison with the pure plastics, the CCR-based materials better maintained the digitally designed shape (lower shrinkage). Importantly, CCR-filled materials are 3D printable, making them very promising components in the building sector. Considering the amount of already available CCR stored in the environment, this material is available in large quantities in the near future for hybrid materials, and anticipated opportunities exist in the additive manufacturing sector. The involvement of CCR in practical composite materials is equally important for environmental protection and reuse of already available multiple-ton wastes.

2.
Chem Asian J ; 18(3): e202201063, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36530060

ABSTRACT

D-labeling is a valuable tool in advanced synthetic chemistry and pharmacy. However, D-incorporation significantly complicates the identification of products. In fact, D labels are invisible in 1 H-NMR spectra and cause undesirable splitting in 13 C-NMR spectra which decreases the detectable limits. At the same time, 2 H-NMR spectra are not effective for precise identification due to low sensitivity and the absence of correlations with 1 H atoms. Here, 13 C-label was considered as an accompanying label for D-label in [13 C+D] unit for identification of D-containing sites and to track D-labels. [13 C+D]-doubly labeled vinyl derivatives and triazoles were synthesized using 13 C-labeled calcium carbide as a source of 13 C-label and deuterium oxide as a source of D-label. The reaction occurred in one-step manner accompanied with in situ doubly labeled acetylene formation. Non-labeled, mono-labeled and doubly labeled substrates were isolated in 25-80% yields.

3.
Int J Mol Sci ; 23(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36233131

ABSTRACT

A general possibility of a sustainable cycle for carbon return to high-value-added products is discussed by turning wastes into acetylene. Pyrolyzed solid municipal wastes, pyrolyzed used cationic exchangers, and other waste carbon sources were studied in view of the design of a sustainable cycle for producing calcium carbide and acetylene. The yields of calcium carbide from carbon wastes were as high as those from industrial fossil raw materials (coke, charcoal, etc.). Conversion of carbon-containing wastes to calcium carbide provides an excellent opportunity to make acetylene, which is directly compatible with modern industry. Overall, the process returns carbon-containing wastes back to sustainable cycles to produce high-value-added products involving only C2-type molecules (calcium carbide and acetylene). Calcium carbide may be stored and transported, and on-demand acetylene generation is easy to realize. Upon incorporation into the waste processing route, calcium carbide may be an efficient carbon reservoir for quick industrial uptake.


Subject(s)
Carbon , Coke , Acetylene/analogs & derivatives , Charcoal , Industrial Waste
4.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576082

ABSTRACT

The development of new drugs is accelerated by rapid access to functionalized and D-labeled molecules with improved activity and pharmacokinetic profiles. Diverse synthetic procedures often involve the usage of gaseous reagents, which can be a difficult task due to the requirement of a dedicated laboratory setup. Here, we developed a special reactor for the on-demand production of gases actively utilized in organic synthesis (C2H2, H2, C2D2, D2, and CO2) that completely eliminates the need for high-pressure equipment and allows for integrating gas generation into advanced laboratory practice. The reactor was developed by computer-aided design and manufactured using a conventional 3D printer with polypropylene and nylon filled with carbon fibers as materials. The implementation of the reactor was demonstrated in representative reactions with acetylene, such as atom-economic nucleophilic addition (conversions of 19-99%) and nickel-catalyzed S-functionalization (yields 74-99%). One of the most important advantages of the reactor is the ability to generate deuterated acetylene (C2D2) and deuterium gas (D2), which was used for highly significant, atom-economic and cost-efficient deuterium labeling of S,O-vinyl derivatives (yield 68-94%). Successful examples of their use in organic synthesis are provided to synthesize building blocks of heteroatom-functionalized and D-labeled biologically active organic molecules.


Subject(s)
Bioreactors , Gases/chemistry , Printing, Three-Dimensional , Equipment Design , Magnetic Resonance Spectroscopy , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...