Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 9: 2834, 2018.
Article in English | MEDLINE | ID: mdl-30538682

ABSTRACT

In Portugal, the epidemiological stage for the spread of carbapenemase-producing Enterobacteriaceae (CPE) increased from sporadic isolates or single hospital clones (2010-2013), to hospital outbreaks, later. Here we report data from a 6-month study performed under the European Survey on Carbapenemase-Producing Enterobacteriaceae (EuSCAPE). During the study period, 67 isolates (61 Klebsiella pneumoniae and 6 Escherichia coli) non-susceptible to carbapenems were identified in participant hospital laboratories. We detected 37 bla KPC-type (including one new variant: bla KPC-21), 1 bla GES-5, and 1 bla GES-6 plus bla KPC-3, alone or in combination with other bla genes. Bioinformatics analysis of the KPC-21-producing E. coli identified the new variant bla KPC-21 in a 12,748 bp length plasmid. The bla KPC-21 gene was harbored on a non-Tn4401 element, presenting upstream a partial ISKpn6 (ΔISKpn6/ΔtraN) with the related left IR (IRL) and downstream a truncated Tn3 transposon. PFGE and MLST analysis showed an important diversity, as isolates belonged to distinct PFGE and STs profiles. In this study, we highlighted the presence of the high-risk clone E. coli sequence-type (ST) 131 clade C/H30. This worldwide disseminated E. coli lineage was already detected in Portugal among other antibiotic resistance reservoirs. This study highlights the intra- and inter-hospital spread and possible intercontinental circulation of CPE isolates.

2.
Front Microbiol ; 8: 1899, 2017.
Article in English | MEDLINE | ID: mdl-29062302

ABSTRACT

A new QepA4 variant was detected in an O86:H28 ST156-fimH38 Escherichia coli, showing a multidrug-resistance phenotype. PAßN inhibition of qepA4-harboring transconjugant resulted in increase of nalidixic acid accumulation. The qepA4 and catA1 genes were clustered in a 26.0-kp contig matching an IncF-type plasmid, and containing a Tn21-type transposon with multiple mobile genetic elements. This QepA variant is worrisome because these determinants might facilitate the selection of higher-level resistance mutants, playing a role in the development of resistance, and/or confer higher-level resistance to fluoroquinolones in association with chromosomal mutations.

3.
Sci Rep ; 7: 42471, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28205536

ABSTRACT

Helicobacter pylori genetic diversity is known to be influenced by mobile genomic elements. Here we focused on prophages, the least characterized mobile elements of H. pylori. We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The genome sizes of these prophages range from 22.6-33.0 Kbp, consisting of 27-39 open reading frames. A 36.6% GC was found in prophages in contrast to 39% in H. pylori genome. Remarkably a conserved integration site was found in over 50% of the cases. Nearly 40% of the prophages harbored insertion sequences (IS) previously described in H. pylori. Tandem repeats were frequently found in the intergenic region between the prophage at the 3' end and the bacterial gene. Furthermore, prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. Evidence of recombination was detected within the genome of some prophages, resulting in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes.


Subject(s)
Genome, Viral , Genomics , Helicobacter pylori/virology , Mutagenesis, Insertional , Prophages/genetics , Genomics/methods , Mosaicism , Open Reading Frames , Phylogeny , Sequence Analysis, DNA
4.
Front Microbiol ; 7: 1660, 2016.
Article in English | MEDLINE | ID: mdl-27826290

ABSTRACT

Morganella morganii is a commensal bacterium and opportunistic pathogen often present in the gut of humans and animals. We report the 4.3 Mbp draft genome sequence of a M. morganii isolated in association with an Escherichia coli from broilers in Portugal that showed macroscopic lesions consistent with colisepticemia. The analysis of the genome matched the multidrug resistance phenotype and enabled the identification of several clinically important and potentially mobile acquired antibiotic resistance genes, including the plasmid-mediated quinolone resistance determinant qnrD1. Mobile genetic elements, prophages, and pathogenicity factors were also detected, improving our understanding toward this human and animal opportunistic pathogen.

6.
Front Microbiol ; 7: 671, 2016.
Article in English | MEDLINE | ID: mdl-27242699

ABSTRACT

Salmonella enterica and Escherichia coli can inhabit humans and animals from multiple origins. These bacteria are often associated with gastroenteritis in animals, being a frequent cause of resistant zoonotic infections. In fact, bacteria from animals can be transmitted to humans through the food chain and direct contact. In this study, we aimed to assess the antibiotic susceptibility of a collection of S. enterica and E. coli recovered from animals of different sources, performing a genomic comparison of the plasmid-mediated quinolone resistance (PMQR)-producing isolates detected. Antibiotic susceptibility testing revealed a high number of non-wild-type isolates for fluoroquinolones among S. enterica recovered from poultry isolates. In turn, the frequency of non-wild-type E. coli to nalidixic acid and ciprofloxacin was higher in food-producing animals than in companion or zoo animals. Globally, we detected two qnrS1 and two aac(6')-Ib-cr in E. coli isolates recovered from animals of different origins. The genomic characterization of QnrS1-producing E. coli showed high genomic similarity (O86:H12 and ST2297), although they have been recovered from a healthy turtle dove from a Zoo Park, and from a dog showing symptoms of infection. The qnrS1 gene was encoded in a IncN plasmid, also carrying bla TEM-1-containing Tn3. Isolates harboring aac(6')-Ib-cr were detected in two captive bottlenose dolphins, within a time span of two years. The additional antibiotic resistance genes of the two aac(6')-Ib-cr-positive isolates (bla OXA-1, bla TEM-1,bla CTX-M-15, catB3, aac(3)-IIa, and tetA) were enclosed in IncFIA plasmids that differed in a single transposase and 60 single nucleotide variants. The isolates could be assigned to the same genetic sublineage-ST131 fimH30-Rx (O25:H4), confirming clonal spread. PMQR-producing isolates were associated with symptomatic and asymptomatic hosts, which highlight the aptitude of E. coli to act as silent vehicles, allowing the accumulation of antibiotic resistance genes, mobile genetic elements and other relevant pathogenicity determinants. Continuous monitoring of health and sick animals toward the presence of PMQR should be strongly encouraged in order to restrain the clonal spread of these antibiotic resistant strains.

7.
Sci Rep ; 6: 26261, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27196677

ABSTRACT

A first strong evidence of person-to-person transmission of Legionnaires' Disease (LD) was recently reported. Here, we characterize the genetic backbone of this case-related Legionella pneumophila strain ("PtVFX/2014"), which also caused a large outbreak of LD. PtVFX/2014 is phylogenetically divergent from the most worldwide studied outbreak-associated L. pneumophila subspecies pneumophila serogroup 1 strains. In fact, this strain is also from serogroup 1, but belongs to the L. pneumophila subspecies fraseri. Its genomic mosaic backbone reveals eight horizontally transferred regions encompassing genes, for instance, involved in lipopolysaccharide biosynthesis or encoding virulence-associated Dot/Icm type IVB secretion system (T4BSS) substrates. PtVFX/2014 also inherited a rare ~65 kb pathogenicity island carrying virulence factors and detoxifying enzymes believed to contribute to the emergence of best-fitted strains in water reservoirs and in human macrophages, as well as a inter-species transferred (from L. oakridgensis) ~37.5 kb genomic island (harboring a lvh/lvr T4ASS cluster) that had never been found intact within L. pneumophila species. PtVFX/2014 encodes another lvh/lvr cluster near to CRISPR-associated genes, which may boost L. pneumophila transition from an environmental bacterium to a human pathogen. Overall, this unique genomic make-up may impact PtVFX/2014 ability to adapt to diverse environments, and, ultimately, to be transmitted and cause human disease.


Subject(s)
Genome, Bacterial , Legionella pneumophila/genetics , Legionnaires' Disease/transmission , Genomic Islands , Humans , Legionella pneumophila/pathogenicity , Phylogeny , Portugal , Serogroup , Virulence Factors/genetics , Whole Genome Sequencing
9.
Genome Announc ; 3(5)2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26404603

ABSTRACT

We report here the draft genome sequence of the first NDM-1-producing Providencia stuartii strain isolated in Portugal. Sequence analyses revealed the presence of an incompatibility group A/C2 (IncA/C2) plasmid and of diverse acquired genes conferring resistance to ß-lactams, aminoglycosides, tetracycline, macrolides, chloramphenicol, and sulfonamides. This sequence contributes to the evaluation of the spread of NDM-1 producers.

10.
Appl Environ Microbiol ; 81(23): 8155-63, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26386065

ABSTRACT

Meat and meat products are important sources of human intestinal infections. We report the isolation of Helicobacter pullorum strains from chicken meat. Bacteria were isolated from 4 of the 17 analyzed fresh chicken meat samples, using a membrane filter method. MIC determination revealed that the four strains showed acquired resistance to ciprofloxacin; one was also resistant to erythromycin, and another one was resistant to tetracycline. Whole-genome sequencing of the four strains and comparative genomics revealed important genetic traits within the H. pullorum species, such as 18 highly polymorphic genes (including a putative new cytotoxin gene), plasmids, prophages, and a complete type VI secretion system (T6SS). The T6SS was found in three out of the four isolates, suggesting that it may play a role in H. pullorum pathogenicity and diversity. This study suggests that the emerging pathogen H. pullorum can be transmitted to humans by chicken meat consumption/contact and constitutes an important contribution toward a better knowledge of the genetic diversity within the H. pullorum species. In addition, some genetic traits found in the four strains provide relevant clues to how this species may promote adaptation and virulence.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Food Microbiology , Genome, Bacterial , Helicobacter/drug effects , Helicobacter/genetics , Meat/microbiology , Animals , Chickens , Ciprofloxacin/pharmacology , Erythromycin/pharmacology , Helicobacter/isolation & purification , Helicobacter/pathogenicity , Microbial Sensitivity Tests , Sequence Analysis, DNA , Tetracycline/pharmacology , Virulence
11.
PLoS One ; 10(7): e0133420, 2015.
Article in English | MEDLINE | ID: mdl-26207372

ABSTRACT

Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum) propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC), and the functionality of the cytotoxin (CT166) through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations) and rapidly increasing in frequency (~23% mutants per 10 passages). RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1). This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to restrict culture propagation to minimal passages and check the status of the CT135 genotype in order to avoid the selection of CT135-negative mutants, likely originating less virulent strains.


Subject(s)
Chlamydia trachomatis/genetics , Down-Regulation , Virulence Factors/genetics , Chlamydia trachomatis/metabolism , Genome, Bacterial , Genotype , Polymorphism, Genetic , Virulence
12.
Genome Announc ; 3(1)2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25657274

ABSTRACT

We present draft genome sequences of 10 Helicobacter pylori clinical strains isolated from children. This will be important for future studies of comparative genomics in order to better understand the virulence determinants underlying peptic ulcer disease.

13.
Genome Announc ; 2(1)2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24459269

ABSTRACT

Chlamydia trachomatis is the etiological agent of trachoma, the leading infectious cause of blindness worldwide. We report here the first complete and annotated genome of a C. trachomatis trachoma-causing serovar C strain (strain TW-3). The chromosome and plasmid are 1,043,554 bp and 7,501 bp in length, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...