Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JCO Glob Oncol ; 6: 1472-1480, 2020 10.
Article in English | MEDLINE | ID: mdl-33001739

ABSTRACT

PURPOSE: To evaluate the sensitivity and specificity of Thermalytix, an artificial intelligence-based computer-aided diagnostics (CADx) engine, to detect breast malignancy by comparing the CADx output with the final diagnosis derived using standard screening modalities. METHODS: This multisite observational study included 470 symptomatic and asymptomatic women who presented for a breast health checkup in two centers. Among them, 238 women had symptoms such as breast lump, nipple discharge, or breast pain, and the rest were asymptomatic. All participants underwent a Thermalytix test and one or more standard-of-care tests for breast cancer screening, as recommended by the radiologists. Results from Thermalytix and standard modalities were obtained independently in a blinded fashion for comparison. The ground truth used for analysis (normal or malignant) was the final impression of an expert clinician based on the symptoms and the available reports of standard modalities (mammography, ultrasonography, elastography, biopsy, fine-needle aspiration cytology, and so on). RESULTS: For the 470 women, Thermalytix resulted in a sensitivity of 91.02% (symptomatic, 89.85%; asymptomatic, 100%) and specificity of 82.39% (symptomatic, 69.04%; asymptomatic, 92.41%) in detection of breast malignancy. Thermalytix showed an overall area under the curve (AUC) of 0.90, with an AUC of 0.82 for symptomatic and 0.98 for asymptomatic women. CONCLUSION: High sensitivity and high AUC of Thermalytix in women of all age groups demonstrates the efficacy of the tool for breast cancer screening. Thermalytix, with its automated scoring and image annotations of potential malignancies and vascularity, can assist the clinician in better decision making and improve quality of care in an affordable and radiation-free manner. Thus, we believe Thermalytix is poised to be a promising modality for breast cancer screening.


Subject(s)
Breast Neoplasms , Artificial Intelligence , Breast/diagnostic imaging , Breast Neoplasms/diagnosis , Female , Humans , Mammography , Treatment Outcome
2.
Artif Intell Med ; 105: 101854, 2020 05.
Article in English | MEDLINE | ID: mdl-32505418

ABSTRACT

MOTIVATION: Breast cancer is the leading cause of cancer deaths among women today. Survival rates in developing countries are around 50%-60% due to late detection. A personalized, accurate risk scoring method can help in targeting the right population for follow-up tests and enables early detection of breast abnormalities. Most of the available risk assessment tools use generic and weakly correlated features like age, weight, height etc. While a personalized risk scoring from screening modalities such as mammography and ultrasound could be helpful, these tests are limited to very few metropolitan hospitals in developing countries due to high capital cost, operational expenses and interpretation expertise needed for a large screening population. METHODS: We propose and analyze a new personalized risk framework called Thermalytix Risk Score (TRS) to identify a high-risk target population for regular screening and enable early stage breast cancer detection at scale. This technique uses Artificial Intelligence (AI) over thermal images to automatically generate a breast health risk score. This risk score is mainly derived from two sub-scores namely, vascular score and hotspot score. A hotspot score signifies the abnormality seen from irregular asymmetric heat patterns seen on the skin surface, whereas vascular score predicts the presence of asymmetric vascular activity. These scores are generated using machine learning algorithms over medically interpretable parameters that describes the metabolic activity inside the breast tissue and indicate the presence of a possible malignancy even in asymptomatic women. RESULTS: The proposed personalized risk score was tested on 769 subjects in four breast cancer screening facilities. The subjects' age ranged from 18 to 82 years with a median of around 45 years. Out of the 769 subjects, 185 subjects were diagnosed with a breast malignancy by an expert radiologist after mammography, ultrasound and/or histopathology. Our personalized AI based risk score achieved an area under the receiver-operator curve (AUC) of 0.89 when compared to an age normalized risk score that showed an AUC of 0.68. We also found that if the computed risk score is used to place individuals into four risk groups, the likelihood of malignancy also increases monotonically with the risk grouping level. CONCLUSION: The proposed AI based personalized risk score uses breast thermal image patterns for risk computation and compares favorably to other generic risk estimation approaches. The proposed risk framework solution is automated, affordable, non-invasive, non-contact and radiation free and works for a wide age range of women from 18 to 82 years, including young women with dense breasts. The proposed score might be further used to assign subjects into one of the four risk groups and provide guidance on the periodicity of screening needed. In addition, the automatically annotated thermal images localizes the potential abnormal regions and might empower the physician to create a better personalized care.


Subject(s)
Breast Neoplasms , Adolescent , Adult , Aged , Aged, 80 and over , Artificial Intelligence , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Early Detection of Cancer , Female , Humans , Mammography , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...