Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Future Microbiol ; 18: 107-116, 2023 01.
Article in English | MEDLINE | ID: mdl-36661097

ABSTRACT

Background: There is critical need for new therapeutic options for treatment of diseases caused by mycobacteria. Materials & methods: Gallesia integrifolia essential oils (EOs) and crude extracts (CEs) were tested for their anti-Mycobacterium tuberculosis and anti-nontuberculous mycobacteria activity. Results: Minimum inhibitory concentration (MIC) of EOs ranged from 15.63 to 62.5 µg/ml against M. tuberculosis and 62.5 to >250 µg/ml against nontuberculous mycobacteria. CEs showed low activity. All EO tested demonstrated synergism with antituberculosis drugs. The cytotoxicity of EOs and CEs, in different cell lines, showed selectivity index from 2.2 to 9.8 and >0.056 to 2.0, respectively. Conclusion: G. integrifolia EOs are a candidate for the development of new therapeutic options in the treatment of tuberculosis and other mycobacterial diseases.


Subject(s)
Mycobacterium Infections , Mycobacterium tuberculosis , Oils, Volatile , Humans , Oils, Volatile/pharmacology , Antitubercular Agents/pharmacology , Nontuberculous Mycobacteria , Microbial Sensitivity Tests
2.
Future Microbiol ; 17: 267-280, 2022 03.
Article in English | MEDLINE | ID: mdl-35164529

ABSTRACT

Background: The development of drugs is essential to eradicate tuberculosis. Materials & methods: Sixteen 3,5-dinitrobenzoylhydrazone (2-17) derivatives and their synthetic precursors 3,5-dinitrobenzoylhydrazide (1) and methyl ester (18) were screened for their anti-Mycobacterium tuberculosis (Mtb) potential. Results: Twelve compounds had minimum inhibitory concentration (MIC) ranging from 0.24 to 7.8 µg/ml against the Mtb strain. The activity was maintained in multidrug-resistant Mtb clinical isolates. Only compound (17) showed activity against nontuberculous mycobacteria. The compounds exhibited a limited spectrum of activity, with an MIC >500 µg/ml against Gram-positive and -negative bacteria. Compounds (2), (5) and (11) showed a synergistic effect with rifampicin. An excellent selectivity index value was found, with values reaching 583.33. Conclusion: 3,5-dinitrobenzoylhydrazone derivatives could be considered as a scaffold for the development of antituberculosis drugs.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Humans , Microbial Sensitivity Tests , Rifampin/pharmacology , Tuberculosis/drug therapy , Tuberculosis/microbiology
3.
Nat Prod Res ; 36(20): 5376-5379, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34124970

ABSTRACT

The chemical investigation of Chromolaena palmaris (Sch.Bip. ex Baker) R.M. King & H. Rob. expands the phytochemical composition knowledge of Chromolaena genus, since this is the first chemical investigation of this species. Twenty-five compounds were identified, including a phytoprostane, 17 flavonoids, 6 phenolic acids, and a caffeoyl-glucoside derivative obtained by classical chromatography and UHPLC-HRMS/MS analysis. Moreover, anti-Mycobacterium tuberculosis and antiproliferative activities of C. palmaris were evaluated. Dichloromethane fraction showed cytotoxicity towards human cancer cell lines, presenting TGI values on glioma (U251) of 27.8 µg mL-1. Furthermore, compounds 1 and 2 exhibited antimicrobial activity against Mycobacterium tuberculosis with MIC of 62.5 and 15.6 µg mL-1, respectively.


Subject(s)
Anti-Infective Agents , Chromolaena , Tuberculosis , Anti-Infective Agents/pharmacology , Chromolaena/chemistry , Flavonoids/chemistry , Glucosides , Humans , Methylene Chloride , Phenols/pharmacology , Phytochemicals , Plant Extracts/chemistry , Plant Extracts/pharmacology
4.
Future Microbiol ; 16: 623-633, 2021 06.
Article in English | MEDLINE | ID: mdl-34098743

ABSTRACT

Aim: To evaluate the modulatory effect of piperine (PIP) on streptomycin (SM) activity in Mycobacterium tuberculosis (Mtb). Materials & methods: SM and PIP minimum inhibitory concentration (MIC) and combinatory activity were determined in Mtb H37Rv and in susceptible and resistant clinical isolates. Ethidium bromide accumulation assay and relative quantification of efflux pumps genes (rv1258c, rv1218c and rv2942), after SM and SM+PIP combination exposure, were also performed. Results: PIP concentration of 25 µg/ml (1/4× MIC) was able to inhibit efflux pumps activity, to modulate SM activity in Mtb, and conducted changes in the relative quantification of efflux pumps genes. Conclusion: SM+PIP combination was able to rescue the SM-susceptible MIC values in SM-resistant Mtb.


Subject(s)
Alkaloids/pharmacology , Antitubercular Agents/pharmacology , Benzodioxoles/pharmacology , Mycobacterium tuberculosis/drug effects , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Streptomycin/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Drug Synergism , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests
5.
Future Microbiol ; 15: 723-738, 2020 06.
Article in English | MEDLINE | ID: mdl-32686961

ABSTRACT

Aim: To evaluate the activity, cytotoxicity and efflux pumps inhibition of a series of 12 novels (-)-camphene-based 1,3,4-thiadiazoles (TDZs) against Mycobacterium tuberculosis (Mtb). Materials & methods: The minimum inhibitory concentration (MIC), cytotoxicity for three cell lines, ethidium bromide accumulation and checkerboard methods were carried out. Results: Compounds (6a, 6b, 6c, 6g, 6h and 6j) showed significant anti-Mtb activity (MIC 3.9-7.8 µg/ml) and no antagonism with anti-TB drugs already used in the TB treatment. Selectivity index (SI) was also determined, with values reaching 42.9 for H37Rv strain and 97.1 for clinical isolate. Five compounds also showed bacterial efflux pumps inhibition and one showed modulator effect with three drugs. Conclusion: These six TDZs should be considered as new scaffolds to develop anti-TB drugs.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Thiadiazoles/pharmacology , Animals , Bacterial Outer Membrane Proteins/drug effects , Blood Cells/drug effects , Chlorocebus aethiops , Drug Discovery , Drug Synergism , Humans , Macrophages/drug effects , Microbial Sensitivity Tests , Sheep/blood , Terpenes/pharmacology , Thiadiazoles/chemical synthesis , Thiadiazoles/toxicity , Tuberculosis/drug therapy , Vero Cells/drug effects
6.
Future Microbiol ; 15: 107-114, 2020 01.
Article in English | MEDLINE | ID: mdl-32064924

ABSTRACT

Aim: To evaluate an assay to detect minimum bactericidal concentration (MBC) in Mycobacterium tuberculosis, using as single model rifampicin, isoniazid, levofloxacin (LVX) and linezolid (LNZ) and in combination. Material & methods: MBCs were carried out directly from resazurin microtiter assay plate and 3D checkerboard in M. tuberculosis H37Rv and five resistant clinical isolates. Results: The proposed MBC assay showed similar values to those determined by MGIT™, used as control. LVX and LNZ's MBC values were close to their MIC values. LNZ or LVX combined with isoniazid and rifampicin showed MBC value reduced in 63.7% of the assays. Conclusion: The proposed assay to determine MBCs of drugs can be applied to the study of new compounds with anti-M. tuberculosis activity to detect their bactericidal effect and also in laboratory routine for clinical dose adjustment of drugs according to the patient's profile.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Drug Resistance, Multiple, Bacterial , Drug Synergism , Humans , Isoniazid/pharmacology , Levofloxacin/pharmacology , Linezolid/pharmacology , Microbial Sensitivity Tests , Rifampin/pharmacology
7.
Future Microbiol ; 14: 981-994, 2019 07.
Article in English | MEDLINE | ID: mdl-31382801

ABSTRACT

Aim: To evaluate the potential of three benzohydrazones (1-3), four acylhydrazones derived from isoniazid (INH-acylhydrazones) (4-7) and one hydrazone (8) as antituberculosis agents. Materials & methods: Inhibitory and bactericidal activities were determined for the reference Mycobacterium tuberculosis (Mtb) strain and clinical isolates. Cytotoxicity, drug combinations and ethidium bromide accumulation assays were also performed. Results: The tested compounds (1-8) presented excellent antituberculosis activity with surprisingly inhibitory (0.12-250 µg/ml) and bactericidal values, even against multidrug-resistant Mtb clinical isolates. Compounds showed high selectivity index, with values reaching 1833.33, and a limited spectrum of activity. Some of the compounds (2 & 8) are also great inhibitors of bacillus efflux pumps. Conclusion: Benzohydrazones and INH-acylhydrazones may be considered scaffolds for the development of new anti-Mtb drugs.


Subject(s)
Antitubercular Agents/pharmacology , Hydrazones/pharmacology , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Cell Line, Tumor , Chlorocebus aethiops , Drug Resistance, Multiple, Bacterial/drug effects , Ethidium/metabolism , HeLa Cells , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Isoniazid/chemical synthesis , Isoniazid/chemistry , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology , Vero Cells
8.
Future Microbiol ; 14: 587-598, 2019 05.
Article in English | MEDLINE | ID: mdl-31148472

ABSTRACT

Aim: 17 new 4-methoxynaphthalene-N-acylhydrazones were synthesized in order to evaluate their biological action against important pathogens. Methods: In vitro susceptibility assays of compounds were performed against Paracoccidioidesbrasiliensis and Mycobacterium tuberculosis. Results: Compounds 4a, 4b and 4k were the most potent against P. brasiliensis, two with minimum inhibitory concentrations of ≤1 µg ml-1 and exhibited pharmacological synergy with amphotericin B. The compounds also showed activity against M. tuberculosis, with 4c and 4k being the more promising. Compound 4k showed good synergistic antimycobacterium activity with ethambutol. None of the compounds tested showed toxicity. Conclusion: We highlight the compound 4k, as a potential agent for the treatment of patients co-infected with paracoccidioidomycosis and tuberculosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Coinfection/drug therapy , Mycobacterium tuberculosis/drug effects , Paracoccidioides/drug effects , Paracoccidioidomycosis/drug therapy , Tuberculosis/drug therapy , Amphotericin B/pharmacology , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Drug Combinations , Drug Discovery , Drug Synergism , Ethambutol/pharmacology , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/pathogenicity , Paracoccidioides/pathogenicity
9.
Future Microbiol ; 14: 331-344, 2019 03.
Article in English | MEDLINE | ID: mdl-30757916

ABSTRACT

AIM: To evaluate (i) the in vitro activity of eugenol (EUG) and three derivatives against Mycobacterium tuberculosis (Mtb), nontuberculous mycobacteria (NTM) and other bacteria, (ii) the EUG and antituberculosis drugs combinatory effect and (iii) the EUG and its derivatives cytotoxicity. MATERIALS & METHODS: Minimum inhibitory concentration of the compounds were determined by resazurin microtiter or broth microdilution assay and the drug interaction between EUG and antituberculosis drugs by resazurin drug combination microtiter. The cytotoxicity was carried out in macrophages, HeLa and VERO cells. Results: EUG and derivatives displayed activity and synergic effect of EUG combined with rifampicin, isoniazid, ethambutol, and pyrazinamide in Mtb including multidrug-resistant isolates, with more selectivity to bacillus than macrophages, HeLa and VERO cells (selective index from 0.65 to 31.4). EUG derivatives (4-allyl-2-methoxyphenyl acetate, 4-allyl-2-methoxyphenyl benzoate, and 4-allyl-2-methoxyphenyl 4-nitrobenzoate) were more active against nontuberculous mycobacteria than EUG. EUG and derivatives exhibited low activity in other Gram-positive and -negative bacteria. CONCLUSION: EUG and its derivatives show activity against Mycobacterium spp. and synergic effect of EUG combined with antituberculosis drugs against Mtb.


Subject(s)
Antitubercular Agents/pharmacology , Eugenol/chemistry , Eugenol/pharmacology , Mycobacterium tuberculosis/drug effects , Nontuberculous Mycobacteria/drug effects , Animals , Chlorocebus aethiops , Humans , Microbial Sensitivity Tests , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...