Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Ann Clin Transl Neurol ; 11(3): 629-640, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311799

ABSTRACT

OBJECTIVE: ACTN2, encoding alpha-actinin-2, is essential for cardiac and skeletal muscle sarcomeric function. ACTN2 variants are a known cause of cardiomyopathy without skeletal muscle involvement. Recently, specific dominant monoallelic variants were reported as a rare cause of core myopathy of variable clinical onset, although the pathomechanism remains to be elucidated. The possibility of a recessively inherited ACTN2-myopathy has also been proposed in a single series. METHODS: We provide clinical, imaging, and histological characterization of a series of patients with a novel biallelic ACTN2 variant. RESULTS: We report seven patients from five families with a recurring biallelic variant in ACTN2: c.1516A>G (p.Arg506Gly), all manifesting with a consistent phenotype of asymmetric, progressive, proximal, and distal lower extremity predominant muscle weakness. None of the patients have cardiomyopathy or respiratory insufficiency. Notably, all patients report Palestinian ethnicity, suggesting a possible founder ACTN2 variant, which was confirmed through haplotype analysis in two families. Muscle biopsies reveal an underlying myopathic process with disruption of the intermyofibrillar architecture, Type I fiber predominance and atrophy. MRI of the lower extremities demonstrate a distinct pattern of asymmetric muscle involvement with selective involvement of the hamstrings and adductors in the thigh, and anterior tibial group and soleus in the lower leg. Using an in vitro splicing assay, we show that c.1516A>G ACTN2 does not impair normal splicing. INTERPRETATION: This series further establishes ACTN2 as a muscle disease gene, now also including variants with a recessive inheritance mode, and expands the clinical spectrum of actinopathies to adult-onset progressive muscle disease.


Subject(s)
Cardiomyopathies , Muscular Diseases , Adult , Humans , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Actinin/genetics , Phenotype
2.
Article in English | MEDLINE | ID: mdl-38083393

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a genetic neuromuscular progressive multisystem disease that results in a broad spectrum of clinical central nervous system (CNS) involvement, including problems with memory, attention, executive functioning, and social cognition. Fractional anisotropy and mean diffusivity along-tract data calculated using diffusion tensor imaging techniques play a vital role in assessing white matter microstructural changes associated with neurodegeneration caused by DM1. In this work, a novel spectrogram-based deep learning method is proposed to characterize white matter network alterations in DM1 with the goal of building a deep learning model as neuroimaging biomarkers of DM1. The proposed method is evaluated on fractional anisotropies and mean diffusivities along-tract data calculated for 25 major white matter tracts of 46 DM1 patients and 96 unaffected controls. The evaluation data consists of a total of 7100 spectrogram images. The model achieved 91% accuracy in identifying DM1, a significant improvement compared to previous methods.Clinical relevance- Clinical care of DM1 is particularly challenging due to DM1 multisystem involvement and the disease variability. Patients with DM1 often experience neurological and psychological symptoms, such as excessive sleepiness and apathy, that greatly impact their quality of life. Some of DM1 CNS symptoms may be responsive to treatment. The goal of this research is to gain a deeper understanding of the impact of DM1 on the CNS and to develop a deep learning model that can serve as a biomarker for the disease, with the potential to be used in future clinical trials as an outcome measure.


Subject(s)
Myotonic Dystrophy , White Matter , Humans , White Matter/diagnostic imaging , Myotonic Dystrophy/diagnostic imaging , Myotonic Dystrophy/complications , Myotonic Dystrophy/psychology , Diffusion Tensor Imaging , Anisotropy , Quality of Life , Neuroimaging
3.
J Clin Med ; 12(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37892834

ABSTRACT

Disease-modifying treatments have transformed the natural history of spinal muscular atrophy (SMA), but the cellular pathways altered by SMN restoration remain undefined and biomarkers cannot yet precisely predict treatment response. We performed an exploratory cerebrospinal fluid (CSF) proteomic study in a diverse sample of SMA patients treated with nusinersen to elucidate therapeutic pathways and identify predictors of motor improvement. Proteomic analyses were performed on CSF samples collected before treatment (T0) and at 6 months (T6) using an Olink panel to quantify 1113 peptides. A supervised machine learning approach was used to identify proteins that discriminated patients who improved functionally from those who did not after 2 years of treatment. A total of 49 SMA patients were included (10 type 1, 18 type 2, and 21 type 3), ranging in age from 3 months to 65 years. Most proteins showed a decrease in CSF concentration at T6. The machine learning algorithm identified ARSB, ENTPD2, NEFL, and IFI30 as the proteins most predictive of improvement. The machine learning model was able to predict motor improvement at 2 years with 79.6% accuracy. The results highlight the potential application of CSF biomarkers to predict motor improvement following SMA treatment. Validation in larger datasets is needed.

4.
Brain ; 146(10): 4217-4232, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37143315

ABSTRACT

Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.


Subject(s)
Myotonic Dystrophy , Humans , Female , Mice , Animals , Myotonic Dystrophy/genetics , Choroid Plexus/metabolism , Choroid Plexus/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alternative Splicing , RNA/genetics , Mice, Knockout , Trinucleotide Repeat Expansion
5.
Lancet Neurol ; 22(2): 127-136, 2023 02.
Article in English | MEDLINE | ID: mdl-36681445

ABSTRACT

BACKGROUND: Adult patients with adrenoleukodystrophy have a poor prognosis owing to development of adrenomyeloneuropathy. Additionally, a large proportion of patients with adrenomyeloneuropathy develop life-threatening progressive cerebral adrenoleukodystrophy. Leriglitazone is a novel selective peroxisome proliferator-activated receptor gamma agonist that regulates expression of key genes that contribute to neuroinflammatory and neurodegenerative processes implicated in adrenoleukodystrophy disease progression. We aimed to assess the effect of leriglitazone on clinical, imaging, and biochemical markers of disease progression in adults with adrenomyeloneuropathy. METHODS: ADVANCE was a 96-week, randomised, double-blind, placebo-controlled, phase 2-3 trial done at ten hospitals in France, Germany, Hungary, Italy, the Netherlands, Spain, the UK, and the USA. Ambulatory men aged 18-65 years with adrenomyeloneuropathy without gadolinium enhancing lesions suggestive of progressive cerebral adrenoleukodystrophy were randomly assigned (2:1 without stratification) to receive daily oral suspensions of leriglitazone (150 mg starting dose; between baseline and week 12, doses were increased or decreased to achieve plasma concentrations of 200 µg·h/mL [SD 20%]) or placebo by means of an interactive response system and a computer-generated sequence. Investigators and patients were masked to group assignment. The primary efficacy endpoint was change from baseline in the Six-Minute Walk Test distance at week 96, analysed in the full-analysis set by means of a mixed model for repeated measures with restricted maximum likelihood and baseline value as a covariate. Adverse events were also assessed in the full-analysis set. This study was registered with ClinicalTrials.gov, NCT03231878; the primary study is complete; patients had the option to continue treatment in an open-label extension, which is ongoing. FINDINGS: Between Dec 8, 2017, and Oct 16, 2018, of 136 patients screened, 116 were randomly assigned; 62 [81%] of 77 patients receiving leriglitazone and 34 [87%] of 39 receiving placebo completed treatment. There was no between-group difference in the primary endpoint (mean [SD] change from baseline leriglitazone: -27·7 [41·4] m; placebo: -30·3 [60·5] m; least-squares mean difference -1·2 m; 95% CI -22·6 to 20·2; p=0·91). The most common treatment emergent adverse events in both the leriglitazone and placebo groups were weight gain (54 [70%] of 77 vs nine [23%] of 39 patients, respectively) and peripheral oedema (49 [64%] of 77 vs seven [18%] of 39). There were no deaths. Serious treatment-emergent adverse events occurred in 14 (18%) of 77 patients receiving leriglitazone and ten (26%) of 39 patients receiving placebo. The most common serious treatment emergent adverse event, clinically progressive cerebral adrenoleukodystrophy, occurred in six [5%] of 116 patients, all of whom were in the placebo group. INTERPRETATION: The primary endpoint was not met, but leriglitazone was generally well tolerated and rates of adverse events were in line with the expected safety profile for this drug class. The finding that cerebral adrenoleukodystrophy, a life-threatening event for patients with adrenomyeloneuropathy, occurred only in patients in the placebo group supports further investigation of whether leriglitazone might slow the progression of cerebral adrenoleukodystrophy. FUNDING: Minoryx Therapeutics.


Subject(s)
Adrenoleukodystrophy , Adult , Male , Humans , Treatment Outcome , Adrenoleukodystrophy/drug therapy , France , Double-Blind Method , Disease Progression
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4377-4382, 2022 07.
Article in English | MEDLINE | ID: mdl-36086274

ABSTRACT

The myotonic dystrophies (DM1 and DM2) are dominantly inherited disorders that cause pathological changes throughout the body. Many individuals with DM experience cognitive, behavioral and other functional central nervous system effects that impact their quality of life. The extent of psychological impairment that will develop in each patient is variable and unpredictable. Hence, it is difficult to get strong supervision information like fully ground truth labels for all cognitive involvement patterns. This study is to assess cognitive involvement among healthy controls and patients with DM. The DM cognitive impairment pattern observation is modeled in a weakly supervised setting and supervision information is used to transform the input feature space to a more discriminative representation suitable for pattern observation. This study incorporated results from 59 adults with DM and 92 control subjects. The developed system categorized the neuropsychological testing data into five cognitive clusters. The quality of the obtained clustering solution was assessed using an internal validity metric. The experimental results show that the proposed algorithm can discover interesting patterns and useful information from neuropsychological data, which will be be crucial in planning clinical trials and monitoring clinical performance. The proposed system resulted in an average classification accuracy of 88%, which is very promising considering the unique challenges present in this population.


Subject(s)
Cognitive Dysfunction , Myotonic Dystrophy , Adult , Cluster Analysis , Cognitive Dysfunction/diagnosis , Humans , Myotonic Dystrophy/diagnosis , Myotonic Dystrophy/pathology , Neuropsychological Tests , Quality of Life
8.
Muscle Nerve ; 65(5): 560-567, 2022 05.
Article in English | MEDLINE | ID: mdl-35179228

ABSTRACT

INTRODUCTION/AIMS: Myotonic dystrophy type 1 (DM1) is known to affect cognitive function, but the best methods to assess central nervous system involvement in multicenter studies have not been determined. In this study our primary aim was to evaluate the potential of computerized cognitive tests to assess cognition in DM1. METHODS: We conducted a prospective, longitudinal, observational study of 113 adults with DM1 at six sites. Psychomotor speed, attention, working memory, and executive functioning were assessed at baseline, 3 months, and 12 months using computerized cognitive tests. Results were compared with assessments of muscle function and patient reported outcomes (PROs), including the Myotonic Dystrophy Health Index (MDHI) and the 5-dimension EuroQol (EQ-5D-5L) questionnaire. RESULTS: Based on intraclass correlation coefficients, computerized cognitive tests had moderate to good reliability for psychomotor speed (0.76), attention (0.82), working memory speed (0.79), working memory accuracy (0.65), and executive functioning (0.87). Performance at baseline was lowest for working memory accuracy (P < .0001). Executive function performance improved from baseline to 3 months (P < .0001), without further changes over 1 year. There was a moderate correlation between poorer executive function and larger CTG repeat size (r = -0.433). There were some weak associations between PROs and cognitive performance. DISCUSSION: Computerized tests of cognition are feasible in multicenter studies of DM1. Poor performance was exhibited in working memory, which may be a useful variable in clinical trials. Learning effects may have contributed to the improvement in executive functioning. The relationship between PROs and cognitive impairment in DM1 requires further study.


Subject(s)
Myotonic Dystrophy , Adult , Cognition , Computers , Humans , Longitudinal Studies , Myotonic Dystrophy/complications , Myotonic Dystrophy/diagnosis , Prospective Studies , Reproducibility of Results
9.
Orphanet J Rare Dis ; 17(1): 79, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197080

ABSTRACT

BACKGROUND: Myotonic dystrophy (DM) is a rare, inherited disorder with multi-systemic effects that impact the skeletal muscles, eyes, heart, skin and gastrointestinal, endocrine, respiratory, and central nervous systems. DM is divided into two subtypes: DM1 can present from early childhood through adulthood and also has a congenital form (cDM) while DM2 typically manifests during mid-adulthood. Both forms are progressive with no approved treatments, and unmet need for disease-modifying therapies remains high. This study interrogated health insurance claims data to explore the clinical experience, healthcare resource utilization (HCRU), and all-cause costs for DM. RESULTS: A total of 8541 patients with DM and 242 patients with cDM and their matched controls were selected from a database of over 200 million claimants. HCRU and all-cause costs, including pharmacy, outpatient, and inpatient services, were analyzed across four years in 12-month follow-up periods. Mean all-cause costs per DM patient were high in each of the four periods (range $14,640-$16,704) and showed a steady increase from 13 to 23 months on, while the control group mean costs declined from $9671 in the first 12 months after the index event, to approach the US population average ($5193) over time. For cDM, the highest mean costs were in the first 12-months ($66,496 vs. $2818 for controls), and remained high (above $17,944) across all subsequent periods, while control mean costs approached $0. For DM and cDM, HCRU was higher compared to controls across all study periods and all-cause healthcare costs were mostly driven by inpatient and outpatient encounters. Analysis of all diagnosis codes over the study period (comorbidities) demonstrated an elevated comorbidity profile consistent with the clinical profile of DM. CONCLUSIONS: This study is among the first to utilize claims data to increase understanding of the clinical experience and health economic outcomes associated with DM. The markedly elevated HCRU patterns and comorbidity profile presented here add to the broad body of scientific and clinical knowledge on DM. These insights can inform clinical care and support the development of disease modifying and/or symptom-targeting therapies that address the multi-systemic, progressive nature of DM.


Subject(s)
Myotonic Dystrophy , Adult , Child, Preschool , Comorbidity , Delivery of Health Care , Health Care Costs , Humans , Insurance, Health , Retrospective Studies
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3838-3841, 2021 11.
Article in English | MEDLINE | ID: mdl-34892071

ABSTRACT

The myotonic dystrophies (DM1 and DM2) are dominantly inherited disorders that cause pathological changes throughout the body and the brain. DM patients have difficulties with memory, attention, executive functioning, social cognition, and visuospatial function. Quantifying and understanding diffusion measures along main brain white matter fiber tracts offer a unique opportunity to reveal new insights into DM development and characterization. In this work, a novel supervised system is proposed, which is based on Tract Profiles sub-band energy information. The proposed system utilizes a Bayesian stacked random forest to diagnose, characterize, and predict DM clinical outcomes. The evaluation data consists of fractional anisotropies calculated for twelve major white matter tracts of 96 healthy controls and 62 DM patients. The proposed system discriminates DM vs. control with 86% accuracy, which is significantly higher than previous works. Additionally, it discovered DM brain biomarkers that are accurate and robust and will be helpful in planning clinical trials and monitoring clinical performance.


Subject(s)
Myotonic Dystrophy , White Matter , Bayes Theorem , Biomarkers , Brain/diagnostic imaging , Humans , White Matter/diagnostic imaging
11.
Neurol Clin Pract ; 11(3): e317-e327, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34476123

ABSTRACT

OBJECTIVE: To determine changes in motor and respiratory function after treatment with nusinersen in adults with spinal muscular atrophy (SMA) during the first two years of commercial availability in the USA. METHODS: Data were collected prospectively on adult (age >17 years at treatment initiation) SMA participants in the Pediatric Neuromuscular Clinical Research (PNCR) Network. Baseline assessments of SMA outcomes including the Expanded Hammersmith Functional Rating Scale (HFMSE), Revised Upper Limb Module (RULM), and 6-Minute Walk Test (6MWT) occurred <5 months before treatment, and post-treatment assessments were made up to 24 months after nusinersen initation. Patient-reported experiences, safety laboratory tests and adverse events were monitored. The mean annual rate of change over time was determined for outcome measures using linear mixed effects models. RESULTS: Forty-two adult SMA participants (mean age: 34 years, range 17-66) receiving nusinersen for a mean of 12.5 months (range 3-24 months) were assessed. Several motor and respiratory measures showed improvement distinct from the progressive decline typically seen in untreated adults. Participants also reported qualitative improvements including muscle strength, stamina, breathing and bulbar related outcomes. All participants tolerated nusinersen with normal surveillance labs and no significant adverse events. CONCLUSIONS: Trends of improvement emerged in functional motor, patient-reported, and respiratory measures, suggesting nusinersen may be efficacious in adults with SMA. Larger well-controlled studies and additional outcome measures are needed to firmly establish the efficacy of nusinersen in adults with SMA. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence regarding nusinersen tolerability and efficacy based on reported side effects and pulmonary and physical therapy assessments in an adult SMA cohort.

12.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: mdl-34291734

ABSTRACT

Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation. During stress, hnRNPs, mRNA, and other RBPs condense in the cytoplasm to form stress granules (SGs). SGs are implicated in the pathogenesis of (neuro-)degenerative diseases, including ALS and inclusion body myopathy (IBM). Mutations in RBPs that affect SG biology, including FUS, TDP-43, hnRNPA1, hnRNPA2B1, and TIA1, underlie ALS, IBM, and other neurodegenerative diseases. Here, we characterize 4 potentially novel HNRNPA1 mutations (yielding 3 protein variants: *321Eext*6, *321Qext*6, and G304Nfs*3) and 2 known HNRNPA1 mutations (P288A and D262V), previously connected to ALS and MSP, in a broad spectrum of patients with hereditary motor neuropathy, ALS, and myopathy. We establish that the mutations can have different effects on hnRNPA1 fibrillization, liquid-liquid phase separation, and SG dynamics. P288A accelerated fibrillization and decelerated SG disassembly, whereas *321Eext*6 had no effect on fibrillization but decelerated SG disassembly. By contrast, G304Nfs*3 decelerated fibrillization and impaired liquid phase separation. Our findings suggest different underlying pathomechanisms for HNRNPA1 mutations with a possible link to clinical phenotypes.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Muscular Atrophy, Spinal/genetics , Adolescent , Adult , Child , DNA Mutational Analysis , Female , Genetic Association Studies , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterozygote , Humans , Male , Middle Aged , Mutation , Pedigree , Stress Granules/metabolism , Exome Sequencing , Young Adult
14.
Muscle Nerve ; 64(2): 219-224, 2021 08.
Article in English | MEDLINE | ID: mdl-34037996

ABSTRACT

INTRODUCTION/AIMS: We studied a patient with a congenital myasthenic syndrome (CMS) caused by a dominant mutation in the synaptotagmin 2 gene (SYT2) and compared the clinical features of this patient with those of a previously described patient with a recessive mutation in the same gene. METHODS: We performed electrodiagnostic (EDX) studies, genetic studies, muscle biopsy, microelectrode recordings and electron microscopy (EM). RESULTS: Both patients presented with muscle weakness and bulbar deficits, which were worse in the recessive form. EDX studies showed presynaptic failure, which was more prominent in the recessive form. Microelectrode studies in the dominant form showed a marked reduction of the quantal content, which increased linearly with higher frequencies of nerve stimulation. The MEPP frequencies were normal at rest but increased markedly with higher frequencies of nerve stimulation. The EM demonstrated overdeveloped postsynaptic folding, and abundant endosomes, multivesicular bodies and degenerative lamellar bodies inside small nerve terminals. DISCUSSION: The recessive form of CMS caused by a SYT2 mutation showed far more severe clinical manifestations than the dominant form. The pathogenesis of the dominant form likely involves a dominant-negative effect due to disruption of the dual function of synaptotagmin as a Ca2+ -sensor and modulator of synaptic vesicle exocytosis.


Subject(s)
Mutation/genetics , Myasthenic Syndromes, Congenital/genetics , Neuromuscular Junction/genetics , Synaptotagmin II/genetics , Adult , Child, Preschool , Female , Humans , Lambert-Eaton Myasthenic Syndrome/genetics , Lambert-Eaton Myasthenic Syndrome/physiopathology , Male , Muscle Weakness/genetics , Muscle Weakness/physiopathology , Myasthenic Syndromes, Congenital/diagnosis , Neuromuscular Junction/physiopathology
15.
Cell Rep ; 34(3): 108634, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33472074

ABSTRACT

Myotonic dystrophy (DM) is caused by expanded CTG/CCTG repeats, causing symptoms in skeletal muscle, heart, and central nervous system (CNS). CNS issues are debilitating and include hypersomnolence, executive dysfunction, white matter atrophy, and neurofibrillary tangles. Here, we generate RNA-seq transcriptomes from DM and unaffected frontal cortex and identify 130 high-confidence splicing changes, most occurring only in cortex, not skeletal muscle or heart. Mis-spliced exons occur in neurotransmitter receptors, ion channels, and synaptic scaffolds, and GRIP1 mis-splicing modulates kinesin association. Optical mapping of expanded CTG repeats reveals extreme mosaicism, with some alleles showing >1,000 CTGs. Mis-splicing severity correlates with CTG repeat length across individuals. Upregulated genes tend to be microglial and endothelial, suggesting neuroinflammation, and downregulated genes tend to be neuronal. Many gene expression changes strongly correlate with mis-splicing, suggesting candidate biomarkers of disease. These findings provide a framework for mechanistic and therapeutic studies of the DM CNS.


Subject(s)
Frontal Lobe/physiopathology , Myotonic Dystrophy/genetics , Transcriptome/genetics , Humans
16.
Genet Med ; 23(2): 259-271, 2021 02.
Article in English | MEDLINE | ID: mdl-33093671

ABSTRACT

PURPOSE: The NIH Undiagnosed Diseases Network (UDN) evaluates participants with disorders that have defied diagnosis, applying personalized clinical and genomic evaluations and innovative research. The clinical sites of the UDN are essential to advancing the UDN mission; this study assesses their contributions relative to standard clinical practices. METHODS: We analyzed retrospective data from four UDN clinical sites, from July 2015 to September 2019, for diagnoses, new disease gene discoveries and the underlying investigative methods. RESULTS: Of 791 evaluated individuals, 231 received 240 diagnoses and 17 new disease-gene associations were recognized. Straightforward diagnoses on UDN exome and genome sequencing occurred in 35% (84/240). We considered these tractable in standard clinical practice, although genome sequencing is not yet widely available clinically. The majority (156/240, 65%) required additional UDN-driven investigations, including 90 diagnoses that occurred after prior nondiagnostic exome sequencing and 45 diagnoses (19%) that were nongenetic. The UDN-driven investigations included complementary/supplementary phenotyping, innovative analyses of genomic variants, and collaborative science for functional assays and animal modeling. CONCLUSION: Investigations driven by the clinical sites identified diagnostic and research paradigms that surpass standard diagnostic processes. The new diagnoses, disease gene discoveries, and delineation of novel disorders represent a model for genomic medicine and science.


Subject(s)
Undiagnosed Diseases , Animals , Genomics , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Retrospective Studies , Exome Sequencing
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1714-1717, 2020 07.
Article in English | MEDLINE | ID: mdl-33018327

ABSTRACT

Myotonic dystrophies (DM) are neuromuscular conditions that cause widespread effects throughout the body. There are brain white matter changes on MRI in patients with DM that correlate with neuropsychological functional changes. How these brain alterations causally relate to the presence and severity of cognitive symptoms remains largely unknown. Deep neural networks have significantly improved the performance of image classification of huge datasets. However, its application in brain imaging is limited and not well described, due to the scarcity of labeled training data. In this work, we propose an approach for the diagnosis of DM based on a spatio-temporal deep learning paradigm. The obtained accuracy (73.71%) and sensitivities and specificities showed that the implemented approach based on 4-D convolutional neural networks leads to a compact, discriminative, and fast computing DM-based clinical medical decision support system.Clinical relevance- Many adults with DM experience cognitive and neurological effects impacting their quality of life, and ability to maintain employment. A robust and reliable DM-based clinical decision support system may help reduce the long diagnostic delay common to DM. Furthermore, it can help neurologists better understand the pathophysiology of the disease and analyze effects of new drugs that aim to address the neurological symptoms of DM.


Subject(s)
Myotonic Dystrophy , Adult , Delayed Diagnosis , Humans , Magnetic Resonance Imaging , Myotonic Dystrophy/diagnostic imaging , Neural Networks, Computer , Quality of Life
18.
J Comp Eff Res ; 9(14): 973-984, 2020 10.
Article in English | MEDLINE | ID: mdl-32851872

ABSTRACT

Aim: Assess the totality of efficacy evidence for ataluren in patients with nonsense mutation Duchenne muscular dystrophy (nmDMD). Materials & methods: Data from the two completed randomized controlled trials (ClinicalTrials.gov: NCT00592553; NCT01826487) of ataluren in nmDMD were combined to examine the intent-to-treat (ITT) populations and two patient subgroups (baseline 6-min walk distance [6MWD] ≥300-<400 or <400 m). Meta-analyses examined 6MWD change from baseline to week 48. Results: Statistically significant differences in 6MWD change with ataluren versus placebo were observed across all three meta-analyses. Least-squares mean difference (95% CI): ITT (n = 342), +17.2 (0.2-34.1) m, p = 0.0473; ≥300-<400 m (n = 143), +43.9 (18.2-69.6) m, p = 0.0008; <400 m (n = 216), +27.7 (6.4-49.0) m, p = 0.0109. Conclusion: These meta-analyses support previous evidence for ataluren in slowing disease progression versus placebo in patients with nmDMD over 48 weeks. Treatment benefit was most evident in patients with a baseline 6MWD ≥300-<400 m (the ambulatory transition phase), thereby informing future trial design.


Subject(s)
Codon, Nonsense/genetics , Muscular Dystrophy, Duchenne/drug therapy , Oxadiazoles/therapeutic use , Randomized Controlled Trials as Topic , Humans , Muscular Dystrophy, Duchenne/genetics
19.
Mol Genet Metab ; 130(1): 58-64, 2020 05.
Article in English | MEDLINE | ID: mdl-32173240

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal disorder characterized by progressive gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, skeletal myopathy, ophthalmoparesis, and ptosis. MNGIE stems from deficient thymidine phosphorylase activity (TP) leading to toxic elevations of plasma thymidine. Hematopoietic stem cell transplant (HSCT) restores TP activity and halts disease progression but has high transplant-related morbidity and mortality. Liver transplant (LT) was reported to restore TP activity in two adult MNGIE patients. We report successful LT in four additional MNGIE patients, including a pediatric patient. Our patients were diagnosed between ages 14 months and 36 years with elevated thymidine levels and biallelic pathogenic variants in TYMP. Two patients presented with progressive gastrointestinal dysmotility, and three demonstrated progressive peripheral neuropathy with two suffering limitations in ambulation. Two patients, including the child, had liver dysfunction and cirrhosis. Following LT, thymidine levels nearly normalized in all four patients and remained low for the duration of follow-up. Disease symptoms stabilized in all patients, with some manifesting improvements, including intestinal function. No patient died, and LT appeared to have a more favorable safety profile than HSCT, especially when liver disease is present. Follow-up studies will need to document the long-term impact of this new approach on disease outcome. Take Home Message: Liver transplantation is effective in stabilizing symptoms and nearly normalizing thymidine levels in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and may have an improved safety profile over hematopoietic stem cell transplant.


Subject(s)
Liver Transplantation/methods , Mitochondria/metabolism , Mitochondrial Encephalomyopathies/therapy , Thymidine Phosphorylase/genetics , Adolescent , Adult , Esophageal Motility Disorders/genetics , Female , Hematopoietic Stem Cell Transplantation/mortality , Humans , Infant , Liver Transplantation/mortality , Magnetic Resonance Imaging , Male , Mitochondria/enzymology , Mitochondria/pathology , Mitochondrial Encephalomyopathies/diagnostic imaging , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/physiopathology , Peripheral Nervous System Diseases/genetics , Thymidine/blood , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...