Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 36(7): 638-644, 2018 08.
Article in English | MEDLINE | ID: mdl-29889213

ABSTRACT

Post-translational phosphorylation is essential to human cellular processes, but the transient, heterogeneous nature of this modification complicates its study in native systems. We developed an approach to interrogate phosphorylation and its role in protein-protein interactions on a proteome-wide scale. We genetically encoded phosphoserine in recoded E. coli and generated a peptide-based heterologous representation of the human serine phosphoproteome. We designed a single-plasmid library encoding >100,000 human phosphopeptides and confirmed the site-specific incorporation of phosphoserine in >36,000 of these peptides. We then integrated our phosphopeptide library into an approach known as Hi-P to enable proteome-level screens for serine-phosphorylation-dependent human protein interactions. Using Hi-P, we found hundreds of known and potentially new phosphoserine-dependent interactors with 14-3-3 proteins and WW domains. These phosphosites retained important binding characteristics of the native human phosphoproteome, as determined by motif analysis and pull-downs using full-length phosphoproteins. This technology can be used to interrogate user-defined phosphoproteomes in any organism, tissue, or disease of interest.


Subject(s)
Peptides/genetics , Protein Interaction Maps/genetics , Proteome/genetics , Serine Proteases/genetics , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/genetics , Amino Acid Motifs/genetics , Escherichia coli/genetics , Gene Library , Humans , Peptides/chemistry , Phosphorylation , Phosphoserine/chemistry , Plasmids/genetics , Serine Proteases/chemistry , WW Domains/genetics
2.
Nucleic Acids Res ; 46(2): 792-803, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29216382

ABSTRACT

CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence ('guide sequence') and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2'-O-methyl-3'-phosphonoacetate, or 'MP') incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications.


Subject(s)
CRISPR-Cas Systems , DNA Cleavage , Gene Editing/methods , RNA, Guide, Kinetoplastida/genetics , Base Sequence , Binding Sites/genetics , Humans , K562 Cells , Phosphonoacetic Acid/chemistry , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/metabolism
3.
J Am Chem Soc ; 133(30): 11540-56, 2011 Aug 03.
Article in English | MEDLINE | ID: mdl-21688829

ABSTRACT

An improved method for the chemical synthesis of RNA was developed utilizing a streamlined method for the preparation of phosphoramidite monomers and a single-step deprotection of the resulting oligoribonucleotide product using 1,2-diamines under anhydrous conditions. The process is compatible with most standard heterobase protection and employs a 2'-O-(1,1-dioxo-1λ(6)-thiomorpholine-4-carbothioate) as a unique 2'-hydroxyl protective group. Using this approach, it was demonstrated that the chemical synthesis of RNA can be as simple and robust as the chemical synthesis of DNA.


Subject(s)
Morpholines/chemistry , Nucleosides/chemistry , Organophosphorus Compounds/chemistry , RNA/chemical synthesis , Sulfur Compounds/chemistry , Molecular Structure , RNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...