Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4412, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37479831

ABSTRACT

Volumetric additive manufacturing techniques are a promising pathway to ultra-rapid light-based 3D fabrication. Their widespread adoption, however, demands significant improvement in print fidelity. Currently, volumetric additive manufacturing prints suffer from systematic undercuring of fine features, making it impossible to print objects containing a wide range of feature sizes, precluding effective adoption in many applications. Here, we uncover the reason for this limitation: light dose spread in the resin due to chemical diffusion and optical blurring, which becomes significant for features ⪅0.5 mm. We develop a model that quantitatively predicts the variation of print time with feature size and demonstrate a deconvolution method to correct for this error. This enables prints previously beyond the capabilities of volumetric additive manufacturing, such as a complex gyroid structure with variable thickness and a fine-toothed gear. These results position volumetric additive manufacturing as a mature 3D printing method, all but eliminating the gap to industry-standard print fidelity.

2.
Opt Express ; 29(7): 11037-11054, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33820224

ABSTRACT

Light-based additive manufacturing techniques enable a rapid transition from object design to production. In these approaches, a 3D object is typically built by successive polymerization of 2D layers in a photocurable resin. A recently demonstrated technique, however, uses tomographic dose patterning to establish a 3D light dose distribution within a cylindrical glass vial of photoresin. Lensing distortion from the cylindrical vial is currently mitigated by either an index matching bath around the print volume or a cylindrical lens. In this work, we show that these hardware approaches to distortion correction are unnecessary. Instead, we demonstrate how the lensing effect can be computationally corrected by resampling the parallel-beam radon transform into an aberrated geometry. We also demonstrate a more general application of our computational approach by correcting for non-telecentricity inherent in most optical projection systems. We expect that our results will underpin a more simple and flexible class of tomographic 3D printers where deviations from the assumed parallel-beam projection geometry are rectified computationally.

3.
Nat Commun ; 12(1): 55, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33397901

ABSTRACT

3D printing has enabled materials, geometries and functional properties to be combined in unique ways otherwise unattainable via traditional manufacturing techniques, yet its adoption as a mainstream manufacturing platform for functional objects is hindered by the physical challenges in printing multiple materials. Vat polymerization offers a polymer chemistry-based approach to generating smart objects, in which phase separation is used to control the spatial positioning of materials and thus at once, achieve desirable morphological and functional properties of final 3D printed objects. This study demonstrates how the spatial distribution of different material phases can be modulated by controlling the kinetics of gelation, cross-linking density and material diffusivity through the judicious selection of photoresin components. A continuum of morphologies, ranging from functional coatings, gradients and composites are generated, enabling the fabrication of 3D piezoresistive sensors, 5G antennas and antimicrobial objects and thus illustrating a promising way forward in the integration of dissimilar materials in 3D printing of smart or functional parts.

4.
Chem Rec ; 19(6): 1093-1112, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30672126

ABSTRACT

Organic photovoltaics (OPVs) have experienced continued interest over the last 25 years as a viable technology for the generation of power. Phthalocyanines are among the oldest commercial dyes and have been utilized in some of the earliest examples of OPVs. In recent years, the use of boron subphthalocyanines (BsubPcs) and silicon phthalocyanines (SiPcs) has attracted a flurry of interest with some examples of fullerene-free devices reaching power conversion efficiencies >8 %. Unlike other more common divalent phthalocyanines such as copper or zinc, BsubPcs and SiPcs contain additional axial groups that can easily be functionalized without significantly affecting the optoelectronic properties of the macrocycle. This handle facilitates our ability to tune the solid-state arrangement and other physical characteristics such as solubility ultimately giving us the ability to improve the thin film processing and final device performance. This review covers recent studies on the development of BsubPcs and SiPcs for use as active materials in organic photovoltaics.

6.
J Phys Chem A ; 122(18): 4414-4424, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29672045

ABSTRACT

An extensive study of the electrochemical and spectroelectrochemical properties of 14 boron subphthalocyanine (BsubPc) derivatives with various axial and peripheral substituents was performed in 1,2-dichloromethane (CH2Cl2) containing 0.1 M tetra- n-butyl-ammonium perchlorate (TBAP) as the supporting electrolyte. From the cyclic voltammetry results, all compounds exhibit one oxidation and at least two reduction processes within the solvent potential window of +1.6 to -1.8 V vs SCE. It was found that the reversibility of the redox reactions depends on the axial and peripheral substituents and the dipole moment of the boron-to-axial substituent. In general, UV-vis absorption spectra of the singly reduced BsubPc derivatives exhibit three equal intensity peaks in the 450 to 650 nm region that are derived from the maximum BsubPc absorbance peak upon reduction. Axial substituents affect the intensity of the three peaks upon reduction, while peripheral substituents shift the position of the peaks to higher wavelengths. Upon oxidation, the UV-vis absorption profile flattens considerably with only a single broad (∼300 nm) band apparent. Understanding the effect of substituents on the stability of the redox processes of BsubPcs will aid in further development of these materials for applications in organic electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...