Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemosphere ; 362: 142619, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880257

ABSTRACT

The present study aims to compare and assess the toxicity induced by aged (irradiated with ultraviolet radiation for 120 days) polyethylene microplastics (PE-MPs) in comparison to virgin (non-irradiated) ones, after feeding the freshwater fish Perca fluviatilis. To this end, MPs mediated genotoxicity was assessed by the investigation of micronucleus nuclear abnormalities frequency in fish blood, and the degree of DNA damage in the liver and muscle tissues, while metabolic alterations were also recorded in both tissues. Results showed that both virgin and aged PE-MPs induced signaling pathways leading to DNA damage and nuclear abnormalities, as well as metabolites changes in all tissues studied. Metabolic changes revealed that the metabolism of nucleic acids, energy, amino acids, and neurotransmitters was more disrupted in the liver and by aged PE-MPs compared to muscles. Fish fed with aged PE-MPs exhibited greater DNA damage, while blood cells of fish fed with virgin PE-MPs seemed to be more vulnerable to nuclear abnormalities in relation to those fed with aged PE-MPs. Moreover, aged PE-MPs induced more acute overall effects on the metabolic profiles of fish tissues, and initiated stronger stress responses, inflammation, and cellular damages in fish tissues in relation to virgin ones. Characterization of both virgin and aged MPs revealed that the latter exhibited lower crystallinity and melting point, more irregular shapes and higher moiety of oxygen and carbonyl groups, which could be attributed for their observed higher toxicity. The research outcomes provide significant insights for advancing toxicological investigations in this field.

2.
J Chromatogr A ; 1690: 463779, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36681007

ABSTRACT

Untargeted metabolomic studies require an extensive set of analyte (metabolic) information to be obtained from each analyzed sample. Thus, highly selective, and efficient analytical methodologies together with reversed-phase (RP) or hydrophilic interaction liquid chromatography (HILIC) are usually applied in these approaches. Here, we present a performance comparison of five different chromatographic columns (C18, C8, RP Amide, zicHILIC, OH5 HILIC phases) to evaluate their sufficiency of analysis for a large analyte library, consisting of 817 authentic standards. By taking into account experimental chromatographic parameters (i.e. retention time, peak tailing and asymmetry, FWHM, signal-to-noise ratio and peak area and intensity), the proposed column scoring approach provides a simple criterion that may assist analysis in the select of a stationary phase for those metabolites of interest. RPLC methods offered better results regarding metabolic library coverage, while the zicHILIC stationary phase delivered a bigger number of properly eluted compounds. This study demonstrates the importance of choosing the most suitable configuration for the analysis of different metabolic classes.


Subject(s)
Metabolome , Metabolomics , Chromatography, Liquid/methods , Metabolomics/methods , Mass Spectrometry/methods , Hydrophobic and Hydrophilic Interactions , Chromatography, Reverse-Phase/methods
3.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430357

ABSTRACT

The massive accumulation of plastics over the decades in the aquatic environment has led to the dispersion of plastic components in aquatic ecosystems, invading the food webs. Plastics fragmented into microplastics can be bioaccumulated by fishes via different exposure routes, causing several adverse effects. In the present study, the dose-dependent cytotoxicity of 8−10 µm polypropylene microplastics (PP-MPs), at concentrations of 1 mg/g (low dose) and 10 mg/g dry food (high dose), was evaluated in the liver and gill tissues of two fish species, the zebrafish (Danio rerio) and the freshwater perch (Perca fluviatilis). According to our results, the inclusion of PP-MPs in the feed of D. rerio and P. fluviatilis hampered the cellular function of the gills and hepatic cells by lipid peroxidation, DNA damage, protein ubiquitination, apoptosis, autophagy, and changes in metabolite concentration, providing evidence that the toxicity of PP-MPs is dose dependent. With regard to the individual assays tested in the present study, the biggest impact was observed in DNA damage, which exhibited a maximum increase of 18.34-fold in the liver of D. rerio. The sensitivity of the two fish species studied differed, while no clear tissue specificity in both fish species was observed. The metabolome of both tissues was altered in both treatments, while tryptophan and nicotinic acid exhibited the greatest decrease among all metabolites in all treatments in comparison to the control. The battery of biomarkers used in the present study as well as metabolomic changes could be suggested as early-warning signals for the assessment of the aquatic environment quality against MPs. In addition, our results contribute to the elucidation of the mechanism induced by nanomaterials on tissues of aquatic organisms, since comprehending the magnitude of their impact on aquatic ecosystems is of great importance.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics/metabolism , Zebrafish/metabolism , Polypropylenes , Ecosystem , Water Pollutants, Chemical/analysis , Fresh Water
4.
Sci Total Environ ; 830: 154603, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35337874

ABSTRACT

The built up of microplastic (MPs) remains is shaping a new aquatic habitat and imposes the necessity for research of the effects that these relatively new pollutants exert on organisms, environment, and human health. The purpose of the present study was to verify if there is a particle-size dependence of fish response to MPs. Thus, we exposed two freshwater fish species, the zebrafish (Danio rerio) and perch (Perca fluviatilis) for 21 days to polyethylene microplastics (PE-MPs) sized 10-45 µm and 106-125 µm. Thereafter, in the liver and gills tissues, biochemical and molecular parameters and the metabolic profile were examined. Ex-vivo characterization by ATR-FTIR spectroscopy exhibited increased concentration of 10-45 µm PE-MPs in the liver of the two fish species while 106-125 µm PE-MPs mostly concentrated in fish gills. The penetration of PE-MPs to fish and the induced oxidative stress triggered changes in lipid peroxidation, DNA damage and ubiquitination and furthermore stimulated signal transduction pathways leading to autophagy and apoptosis. The smaller PE-MPs were more potent in inducing alterations to all the latter parameters measured than the larger ones. Tissue response in both fish seems to depend on the parameter measured and does not seem to follow a specific pattern. Our results showed that there is no clear sensitivity of one fish species versus the other, against both sizes of PE-MPs they were exposed. In perch the metabolic changes in gills were distinct to the ones observed in liver, following a size dependent pattern, indicating that stress conditions are generated through different mechanisms. All the parameters employed can be suggested further as biomarkers in biomonitoring studies against PE-MPs.


Subject(s)
Perches , Water Pollutants, Chemical , Animals , Fresh Water , Microplastics/toxicity , Plastics/metabolism , Polyethylene/metabolism , Polyethylene/toxicity , Water Pollutants, Chemical/analysis , Zebrafish/metabolism
5.
Metabolites ; 12(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35208191

ABSTRACT

A headspace-solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) method was developed herein for the analysis of virgin olive oil volatile metabolome. Optimisation of SPME conditions was performed by Design of Experiments (DoE) and Response Surface Methodology (RSM) approaches and factors, such as sample volume, sample stirring, extraction temperature and time, and desorption temperature and time, were examined to reach optimal microextraction conditions. The potential of the optimised method was then investigated for its use in the classification of Cretan virgin olive oil samples with the aid of multivariate statistical analysis. Certain markers were identified with significance in the geographical classification of Cretan extra-virgin olive oil (EVOO) samples. In total, 92 volatile organic compounds were tentatively identified and semi-quantified, and the data obtained confirm that the method is robust, reliable, and analytically powerful for olive oil classification.

6.
Toxics ; 9(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34822680

ABSTRACT

Microplastics (MPs)' ingestion has been demonstrated in several aquatic organisms. This process may facilitate the hydrophobic waterborne pollutants or chemical additives transfer to biota. In the present study the suitability of a battery of biomarkers on oxidative stress, physiology, tissue function and metabolic profile was investigated for the early detection of adverse effects of 21-day exposure to polystyrene microplastics (PS-MPs, sized 5-12 µm) in the liver and gills of zebrafish Danio rerio and perch, Perca fluviatilis, both of which are freshwater fish species. An optical volume map representation of the zebrafish gill by Raman spectroscopy depicted 5 µm diameter PS-MP dispersed in the gill tissue. Concentrations of PS-MPs close to the EC50 of each fish affected fish physiology in all tissues studied. Increased levels of biomarkers of oxidative damage in exposed fish in relation to controls were observed, as well as activation of apoptosis and autophagy processes. Malondialdehyde (MDA), protein carbonyls and DNA damage responses differed with regard to the sensitivity of each tissue of each fish. In the toxicity cascade gills seemed to be more liable to respond to PS-MPs than liver for the majority of the parameters measured. DNA damage was the most susceptible biomarker exhibiting greater response in the liver of both species. The interaction between MPs and cellular components provoked metabolic alterations in the tissues studied, affecting mainly amino acids, nitrogen and energy metabolism. Toxicity was species and tissue specific, with specific biomarkers responding differently in gills and in liver. The fish species that seemed to be more susceptible to MPs at the conditions studied, was P. fluviatilis compared to D. rerio. The current findings add to a holistic approach for the identification of small sized PS-MPs' biological effects in fish, thus aiming to provide evidence regarding PS-MPs' environmental impact on wild fish populations and food safety and adequacy.

7.
J Hazard Mater ; 416: 125969, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492880

ABSTRACT

In the present study the effects of sublethal concentrations of polystyrene microplastics (PS-MPs) on zebrafish were evaluated at multiple levels, related to fish activity and oxidative stress, metabolic changes and contraction parameters in the heart tissue. Zebrafish were fed for 21 days food enriched with PS-MPs (particle sizes 3-12 µm) and a battery of stress indices like DNA damage, lipid peroxidation, autophagy, ubiquitin levels, caspases activation, metabolite adjustments, frequency and force of ventricular contraction were measured in fish heart, parallel to fish swimming velocity. In particular, exposure to PS-MPs caused significant decrease in heart function and swimming competence, while enhanced levels of oxidative stress indices and metabolic adjustments were observed in the heart of challenged species. Among stress indices, DNA damage was more vulnerable to the effect of PS-MPs. Our results provide evidence on the multiplicity of the PS-MPs effects on cellular function, physiology and metabolic pathways and heart rate of adult fish and subsequent effects on fish activity and fish fitness thus enlightening MPs characterization as a potent environmental pollutant.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Oxidative Stress , Plastics , Polystyrenes/metabolism , Polystyrenes/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
8.
Metabolites ; 11(2)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513809

ABSTRACT

The national infrastructure FoodOmicsGR_RI coordinates research efforts from eight Greek Universities and Research Centers in a network aiming to support research and development (R&D) in the agri-food sector. The goals of FoodOmicsGR_RI are the comprehensive in-depth characterization of foods using cutting-edge omics technologies and the support of dietary/nutrition studies. The network combines strong omics expertise with expert field/application scientists (food/nutrition sciences, plant protection/plant growth, animal husbandry, apiculture and 10 other fields). Human resources involve more than 60 staff scientists and more than 30 recruits. State-of-the-art technologies and instrumentation is available for the comprehensive mapping of the food composition and available genetic resources, the assessment of the distinct value of foods, and the effect of nutritional intervention on the metabolic profile of biological samples of consumers and animal models. The consortium has the know-how and expertise that covers the breadth of the Greek agri-food sector. Metabolomics teams have developed and implemented a variety of methods for profiling and quantitative analysis. The implementation plan includes the following research axes: development of a detailed database of Greek food constituents; exploitation of "omics" technologies to assess domestic agricultural biodiversity aiding authenticity-traceability control/certification of geographical/genetic origin; highlighting unique characteristics of Greek products with an emphasis on quality, sustainability and food safety; assessment of diet's effect on health and well-being; creating added value from agri-food waste. FoodOmicsGR_RI develops new tools to evaluate the nutritional value of Greek foods, study the role of traditional foods and Greek functional foods in the prevention of chronic diseases and support health claims of Greek traditional products. FoodOmicsGR_RI provides access to state-of-the-art facilities, unique, well-characterised sample sets, obtained from precision/experimental farming/breeding (milk, honey, meat, olive oil and so forth) along with more than 20 complementary scientific disciplines. FoodOmicsGR_RI is open for collaboration with national and international stakeholders.

9.
Metabolites ; 7(1)2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28208794

ABSTRACT

Modified quantitative structure retention relationships (QSRRs) are proposed and applied to describe two retention data sets: A set of 94 metabolites studied by a hydrophilic interaction chromatography system under organic content gradient conditions and a set of tryptophan and its major metabolites analyzed by a reversed-phase chromatographic system under isocratic as well as pH and/or simultaneous pH and organic content gradient conditions. According to the proposed modification, an additional descriptor is added to a conventional QSRR expression, which is the analyte retention time, tR(R), measured under the same elution conditions, but in a second chromatographic column considered as a reference one. The 94 metabolites were studied on an Amide column using a Bare Silica column as a reference. For the second dataset, a Kinetex EVO C18 and a Gemini-NX column were used, where each of them was served as a reference column of the other. We found in all cases a significant improvement of the performance of the QSRR models when the descriptor tR(R) was considered.

10.
J Chromatogr A ; 1406: 145-55, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26122858

ABSTRACT

In the present work two different approaches, a semi-quantitative and a Derringer function approach, were developed to assist column selection for method development in targeted metabolomics. These approaches were applied in the performance assessment of three HILIC columns with different chemistries (an amide, a diol and a zwitterionic phase). This was the first step for the development of a HILIC UPLC-MS/MS method that should be capable to analyze a large number of polar metabolites. Two gradient elution profiles and two mobile phase pH values were tested for the analysis of multi-analyte mixtures. Acquired chromatographic data were firstly treated by a ratiometric, "semi-quantitative" approach which quantifies various overall analysis parameters (e.g. the percent of detected compounds, retentivity and resolved critical pairs). These parameters were used to assess chromatographic performance in a rather conventional/traditional and cumbersome/labor-intensive way. Secondly, a comprehensive and automated comparison of the three columns was performed by monitoring several well-known chromatographic parameters (peak width, resolution, tailing factor, etc.) using a lab-built programming script which calculates overall desirability utilizing Derringer functions. Derringer functions exhibit the advantage that column performance is ultimately expressed in an objective single and quantitative value which can be easily interpreted. In summary, results show that each column exhibits unique strengths in metabolic profiling of polar compounds. The applied methodology proved useful for the selection of the most effective chromatographic system during method development for LC-MS/MS targeted metabolomics, while it could further assist in the selection of chromatographic conditions for the development of multi-analyte methods.


Subject(s)
Chromatography, Liquid , Metabolomics/instrumentation , Metabolomics/methods , Models, Theoretical , Tandem Mass Spectrometry , Hydrophobic and Hydrophilic Interactions
11.
Electrophoresis ; 36(18): 2215-2225, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26180020

ABSTRACT

The paper reports the development of a multianalyte method and its application in metabolic profiling of biological fluids. The initial aim of the method was the quantification of metabolites existing in cell culture medium used in in-vitro fertilization (IVF) and in other biological fluids related to embryo growth. Since most of these analytes are polar primary metabolites a hydrophilic interaction liquid chromatography system was selected. The analytical system comprised Ultra-HPLC with detection on a triple quadrupole mass spectrometer operating in both positive and negative modes. Mobile phase and gradient elution conditions were studied with the aim to achieve the highest coverage of metabolic space in a single injection namely the largest number of analytes that could be detected and quantified. The developed method provides absolute quantitation of ca. 100 metabolites belonging to key metabolite classes such as sugars, aminoacids, nucleotides, organic acids, and amines. Following validation, the method was applied for the metabolic profiling of hundreds of samples of spent culture medium originating from human IVF procedures and several hundreds of biological samples such as amniotic fluid, human urine and blood serum from pregnant women. The bioanalytical end-point was to provide assistance in the process of embryo transfer and improving IVF success rates but also to provide insight in complications related to the subsequent embryo growth during pregnancy.

SELECTION OF CITATIONS
SEARCH DETAIL
...