Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Surg ; 105(5): 597-605, 2018 04.
Article in English | MEDLINE | ID: mdl-29193022

ABSTRACT

BACKGROUND: The aim of this study was to monitor the effect of humidified-warm carbon dioxide (HWCO2 ) delivered into the open abdomen of mice, simulating laparotomy. METHODS: Mice were anaesthetized, ventilated and subjected to an abdominal incision followed by wound retraction. In the experimental group, a diffuser device was used to deliver HWCO2 ; the control group was exposed to passive air flow. In each group of mice, surgical damage was produced on one side of the peritoneal wall. Vital signs and core temperature were monitored throughout the 1-h procedure. The peritoneum was closed and mice were allowed to recover for 24 h or 10 days. Tumour cells were delivered into half of the mice in each cohort. Tissue was then examined using scanning electron microscopy and immunohistochemistry. RESULTS: Passive air flow generated ultrastructural damage including mesothelial cell bulging/retraction and loss of microvilli, as assessed at 24 h. Evidence of surgical damage was still measurable on day 10. HWCO2 maintained normothermia, whereas open surgery alone led to hypothermia. The degree of tissue damage was significantly reduced by HWCO2 compared with that in controls. Peritoneal expression of hypoxia inducible factor 1α and vascular endothelial growth factor A was lowered by HWCO2 . These effects were also evident at the surgical damage sites, where protection from tissue trauma extended to 10 days. HWCO2 did not reduce tumorigenesis in surgically damaged sites compared with passive air flow. CONCLUSION: HWCO2 diffusion into the abdomen in the context of open surgery afforded tissue protection and accelerated tissue repair in mice, while preserving normothermia. Surgical relevance Damage to the peritoneum always occurs during open abdominal surgery, by exposure to desiccating air and by mechanical trauma/damage owing to the surgical intervention. Previous experimental studies showed that humidified-warm carbon dioxide (HWCO2 ) reduced peritoneal damage during laparoscopic insufflation. Additionally, this intervention decreased experimental peritoneal carcinomatosis compared with the use of conventional dry-cold carbon dioxide. In the present experimental study, the simple delivery of HWCO2 into the open abdomen reduced the amount of cellular damage and inflammation, and accelerated tissue repair. Sites of surgical intervention serve as ideal locations for cancer cell adhesion and subsequent tumour formation, but this was not changed measurably by the delivery of HWCO2 .


Subject(s)
Abdominal Neoplasms/surgery , Carbon Dioxide/administration & dosage , Hypothermia/prevention & control , Insufflation/methods , Laparotomy , Neoplasms, Experimental , Neoplasms, Mesothelial/surgery , Abdominal Neoplasms/diagnosis , Animals , Epithelium/ultrastructure , Female , Hot Temperature , Humidity , Intraoperative Period , Mice , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Neoplasms, Mesothelial/diagnosis , Peritoneum
2.
Oncogene ; 35(19): 2475-84, 2016 05 12.
Article in English | MEDLINE | ID: mdl-26300002

ABSTRACT

Transcription factor Myb is overexpressed in most colorectal cancers (CRC). Patients with CRC expressing the highest Myb are more likely to relapse. We previously showed that mono-allelic loss of Myb in an Adenomatous polyposis coli (APC)-driven CRC mouse model (Apc(Min/+)) significantly improves survival. Here we directly investigated the association of Myb with poor prognosis and how Myb co-operates with tumor suppressor genes (TSGs) (Apc) and cell cycle regulator, p27. Here we generated the first intestinal-specific, inducible transgenic model; a MybER transgene encoding a tamoxifen-inducible fusion protein between Myb and the estrogen receptor-α ligand-binding domain driven by the intestinal-specific promoter, Gpa33. This was to mimic human CRC with constitutive Myb activity in a highly tractable mouse model. We confirmed that the transgene was faithfully expressed and inducible in intestinal stem cells (ISCs) before embarking on carcinogenesis studies. Activation of the MybER did not change colon homeostasis unless one p27 allele was lost. We then established that MybER activation during CRC initiation using a pro-carcinogen treatment, azoxymethane (AOM), augmented most measured aspects of ISC gene expression and function and accelerated tumorigenesis in mice. CRC-associated symptoms of patients including intestinal bleeding and anaemia were faithfully mimicked in AOM-treated MybER transgenic mice and implicated hypoxia and vessel leakage identifying an additional pathogenic role for Myb. Collectively, the results suggest that Myb expands the ISC pool within which CRC is initiated while co-operating with TSG loss. Myb further exacerbates CRC pathology partly explaining why high MYB is a predictor of worse patient outcome.


Subject(s)
Carcinogenesis , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Intestinal Mucosa/metabolism , Intestines/pathology , Proto-Oncogene Proteins c-myb/metabolism , Animals , Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Mice , Mice, Transgenic , Organ Specificity , Stem Cells/pathology , Tumor Hypoxia , Vascular Endothelial Growth Factor A/genetics
3.
Cell Death Dis ; 4: e605, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23618903

ABSTRACT

The gastrointestinal (GI) epithelium is constantly renewing, depending upon the intestinal stem cells (ISC) regulated by a spectrum of transcription factors (TFs), including Myb. We noted previously in mice with a p300 mutation (plt6) within the Myb-interaction-domain phenocopied Myb hypomorphic mutant mice with regard to thrombopoiesis, and here, changes in GI homeostasis. p300 is a transcriptional coactivator for many TFs, most prominently cyclic-AMP response element-binding protein (CREB), and also Myb. Studies have highlighted the importance of CREB in proliferation and radiosensitivity, but not in the GI. This prompted us to directly investigate the p300-Myb-CREB axis in the GI. Here, the role of CREB has been defined by generating GI-specific inducible creb knockout (KO) mice. KO mice show efficient and specific deletion of CREB, with no evident compensation by CREM and ATF1. Despite complete KO, only modest effects on proliferation, radiosensitivity and differentiation in the GI under homeostatic or stress conditions were evident, even though CREB target gene pcna (proliferating cell nuclear antigen) was downregulated. creb and p300 mutant lines show increased goblet cells, whereas a reduction in enteroendocrine cells was apparent only in the p300 line, further resembling the Myb hypomorphs. When propagated in vitro, crebKO ISC were defective in organoid formation, suggesting that the GI stroma compensates for CREB loss in vivo, unlike in MybKO studies. Thus, it appears that p300 regulates GI differentiation primarily through Myb, rather than CREB. Finally, active pCREB is elevated in colorectal cancer (CRC) cells and adenomas, and is required for the expression of drug transporter, MRP2, associated with resistance to Oxaliplatin as well as several chromatin cohesion protein that are relevant to CRC therapy. These data raise the prospect that CREB may have a role in GI malignancy as it does in other cancer types, but unlike Myb, is not critical for GI homeostasis.


Subject(s)
Colon/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Intestine, Small/metabolism , Proto-Oncogene Proteins c-myb/metabolism , p300-CBP Transcription Factors/metabolism , Amino Acid Sequence , Animals , Cell Transformation, Neoplastic , Cells, Cultured , Colon/pathology , Cyclic AMP Response Element-Binding Protein/deficiency , Cyclic AMP Response Element-Binding Protein/genetics , Intestine, Small/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Organoplatinum Compounds/pharmacology , Oxaliplatin , Proliferating Cell Nuclear Antigen/metabolism , Proteins/metabolism , Proto-Oncogene Proteins c-myb/genetics , Radiation Tolerance , Sequence Alignment , Whole-Body Irradiation , p300-CBP Transcription Factors/genetics
4.
Neurobiol Dis ; 42(1): 48-54, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21220022

ABSTRACT

Absence-like seizures in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model are believed to arise in hyperexcitable somatosensory cortical neurons, however the cellular basis of this increased excitability remains unknown. We have previously shown that expression of the Transmembrane AMPA receptor Regulatory Protein (TARP), stargazin, is elevated in the somatosensory cortex of GAERS. TARPs are critical regulators of the trafficking and function of AMPA receptors. Here we examine the developmental expression of stargazin and the impact this may have on AMPA receptor trafficking in the GAERS model. We show that elevated stargazin in GAERS is associated with an increase in AMPA receptor proteins, GluA1 and GluA2 in the somatosensory cortex plasma membrane of adult epileptic GAERS. Elevated stargazin expression is not seen in the epileptic WAG/Rij rat, which is a genetically distinct but phenotypically similar rat model also manifesting absence seizures, indicating that the changes seen in GAERS are unlikely to be a secondary consequence of the seizures. In juvenile (6 week old) GAERS, at the age when seizures are just starting to be expressed, there is elevated stargazin mRNA, but not protein expression for stargazin or the AMPA receptor subunits. In neonatal (7 day old) pre-epileptic GAERS there was no alteration in stargazin mRNA expression in any brain region examined. These data demonstrate that stargazin and AMPA receptor membrane targeting is altered in GAERS, potentially contributing to hyperexcitability in somatosensory cortex, with a developmental time course that would suggest a pathophysiological role in the epilepsy phenotype.


Subject(s)
Calcium Channels/biosynthesis , Epilepsy/genetics , Neurons/metabolism , Receptors, AMPA/biosynthesis , Somatosensory Cortex/metabolism , Animals , Calcium Channels/genetics , Cell Membrane/genetics , Cell Membrane/pathology , Cell Membrane/physiology , Disease Models, Animal , Epilepsy/pathology , Epilepsy/physiopathology , Genetic Predisposition to Disease , Neurons/pathology , Neurons/physiology , Phenotype , Rats , Rats, Mutant Strains , Receptors, AMPA/genetics , Somatosensory Cortex/pathology , Somatosensory Cortex/physiopathology
6.
Cardiovasc Res ; 15(3): 151-8, 1981 Mar.
Article in English | MEDLINE | ID: mdl-7260983

ABSTRACT

The system which controls cardiac output was studied in dogs during exercise on the treadmill. The aim was to investigate whether the pattern of the workload influences the control system. To measure cardiac output, electromagnetic flow probes were implanted at least 10 days before the exercise study. During the experiments cardiac output was computed on a beat-to-beat basis. We compared changes in cardiac output resulting from stepwise, sinusoidally and randomly varying workloads, obtained by changing treadmill velocity accordingly. The time constants found with sinusoidally and randomly varying workloads were 11.6 and 10.0s respectively. The time constants of the alteration in cardiac output resulting from a step function was 9.9s for the positive step and 15.6s for the negative step. However when the stepwise change in workload was between a velocity of 0.67 and 1.56 m.s-1 positive and negative steps yielded the same time constant (13.5 s). It is concluded that the pattern of the workload has no influence on the control system of cardiac output during exercise.


Subject(s)
Cardiac Output , Physical Exertion , Animals , Aorta/physiology , Dogs , Heart Rate , Regional Blood Flow , Stroke Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...