Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1174823, 2023.
Article in English | MEDLINE | ID: mdl-38023892

ABSTRACT

Three primary factors that impact plant growth and development are light quantity, quality, and duration. Commercial growers can manipulate these parameters using light-emitting diodes (LEDs) to optimize biomass yield and plant quality. There is significant potential to synergize supplemental lighting (SL) parameters with seasonal variation of ambient sunlight to optimize crop light use efficiency (LUE), which could increase biomass while reducing SL electricity costs. To determine the best lighting characteristics and durations for different crops, particularly for enhancing the yield and nutritional quality of high-value specialty crops produced in greenhouses during the winter, a thorough efficacy comparison of progressive incremental daily light integrals (DLIs) using LED and high-pressure sodium (HPS) sources is required. The purpose of this study was to compare the effects of differential application timing and DLIs of supplemental blue (B)/red (R) narrowband wavelengths from LED lighting systems and HPS lamps on greenhouse hydroponic basil (Ocimum basilicum var. 'Genovese') production. We assessed edible biomass, nutrient bioaccumulation, and LUE. Nine light treatments included: one non-supplemented natural light (NL) control, two end-of-day (EOD) HPS treatments applied for 6 h and 12 h, five EOD 20B/80R LED treatments applied for 3 h, 6 h, 9 h, 12 h, 18 h, and one continuous LED treatment (24 h). Each SL treatment provided 100 µmol·m-2·s-1. The DLI of the NL control averaged 9.9 mol·m-2·d-1 during the growth period (ranging from 4 to 20 mol·m-2·d-1). SL treatments and growing seasons significantly impacted biomass and nutrient bioaccumulation; some SL treatments had lower yields than the non-supplemented NL control. January growing season produced the lowest fresh mass (FM) and dry mass (DM) values compared to November, which had the highest. Mineral analyses revealed that both growing seasons and lighting types impacted macro and micronutrient accumulation. Additionally, the efficiency of each treatment in converting electrical energy into biomass varied greatly. EOD supplements using LED and HPS lighting systems both have merits for efficiently optimizing yield and nutrient accumulation in basil; however, biomass and nutrient tissue concentrations highly depend on seasonal variation in ambient sunlight in conjunction with a supplement's spectral quality, DLI, and application schedule.

2.
Front Plant Sci ; 14: 1184664, 2023.
Article in English | MEDLINE | ID: mdl-37434608

ABSTRACT

The spectral quality of supplemental greenhouse lighting can directly influence aroma volatiles and secondary metabolic resource allocation (i.e., specific compounds and classes of compounds). Research is needed to determine species-specific secondary metabolic responses to supplemental lighting (SL) sources with an emphasis on variations in spectral quality. The primary objective of this experiment was to determine the impact of supplemental narrowband blue (B) and red (R) LED lighting ratios and discrete wavelengths on flavor volatiles in hydroponic basil (Ocimum basilicum var. Italian Large Leaf). A natural light (NL) control and different broadband lighting sources were also evaluated to establish the impact of adding discrete and broadband supplements to the ambient solar spectrum. Each SL treatment provided 8.64 mol.m-2.d-1 (100 µmol.m-2.s-1, 24 h.d-1) photon flux. The daily light integral (DLI) of the NL control averaged 11.75 mol.m-2.d-1 during the growth period (ranging from 4 to 20 mol.m-2.d-1). Basil plants were harvested 45 d after seeding. Using GC-MS, we explored, identified, and quantified several important volatile organic compounds (VOCs) with known influence on sensory perception and/or plant physiological processes of sweet basil. We found that the spectral quality from SL sources, in addition to changes in the spectra and DLI of ambient sunlight across growing seasons, directly influence basil aroma volatile concentrations. Further, we found that specific ratios of narrowband B/R wavelengths, combinations of discrete narrowband wavelengths, and broadband wavelengths directly and differentially influence the overall aroma profile as well as specific compounds. Based on the results of this study, we recommend supplemental 450 and 660 nm (± 20 nm) wavelengths at a ratio of approximately 10B/90R at 100-200 µmol.m-2.s-1, 12-24 h.d-1 for sweet basil grown under standard greenhouse conditions, with direct consideration of the natural solar spectrum and DLI provided for any given location and growing season. This experiment demonstrates the ability to use discrete narrowband wavelengths to augment the natural solar spectrum to provide an optimal light environment across variable growing seasons. Future experiments should investigate SL spectral quality for the optimization of sensory compounds in other high-value specialty crops.

3.
Mol Biol Rep ; 49(7): 6623-6632, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35618938

ABSTRACT

BACKGROUND: Molecular markers have played and will continue to play a major role in the genetic characterization and improvement of soybeans. They have helped identify major loci for tolerance to abiotic stressors, disease resistance, herbicide resistance, soybean seed quality traits, and yield. However, most yield quantitative trait loci (QTL) are specific to a certain population, and the genetic variation found in the specific bi-parental population is not always shared in other populations. A major objective in soybean breeding is to develop high yielding cultivars. Unfortunately, soybean seed yield, as well as protein and oil content, are complex quantitative traits to characterize from the phenotypic and genotypic perspectives. The objectives of this study are to detect soybean genomic regions that increase protein content, while maintaining oil content and seed yield and to successfully identify soybean QTL associated with these seed quality traits. METHODS AND RESULTS: To achieve these objectives, data from the 138 recombinant inbred lines grown in six environments were used to perform QTL detection analyses in search of significant genomic regions affecting soybean seed protein, oil, and yield. CONCLUSIONS: A total of 21 QTL were successfully identified for yield, protein, oil, methionine, threonine, lodging, maturity, and meal. Knowledge of their locations and flanking markers will aid in marker assisted selection for plant breeders. This will lead to a more valuable soybean for farmers, processors, and animal nutritionists.


Subject(s)
Glycine max , Quantitative Trait Loci , Chromosome Mapping/methods , Genotype , Phenotype , Plant Breeding , Quantitative Trait Loci/genetics , Seeds/genetics , Seeds/metabolism , Glycine max/genetics , Glycine max/metabolism
4.
Plants (Basel) ; 11(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35214899

ABSTRACT

Switchgrass (Panicum virgatum L.) is a warm-season perennial grass species that is utilized as forage for livestock and biofuel feedstock. The stability of biomass yield and regrowth vigor under changing harvest frequency would help manage potential fluctuations in the feedstock market and would provide a continuous supply of quality forage for livestock. This study was conducted to (i) assess the genetic variation and (ii) identify the quantitative trait loci (QTL) associated with regrowth vigor after multiple cuttings in lowland switchgrass. A nested association mapping (NAM) population comprising 2000 pseudo F2 progenies was genotyped with single nucleotide polymorphism (SNP) markers derived from exome-capture sequencing and was evaluated for regrowth vigor in 2017 and 2018. The results showed significant variation among the NAM families in terms of regrowth vigor (p < 0.05). A total of 10 QTL were detected on 6 chromosomes: 1B, 5A, 5B, 6B, 7B, and 8A, explaining the phenotypic variation by up to 4.7%. The additive genetic effects of an individual QTL ranged from -0.13 to 0.26. No single QTL showed a markedly large effect, suggesting complex genetics underlying regrowth vigor in switchgrass. The homologs of candidate genes that play a variety of roles in developmental processes, including plant hormonal signal transduction, nucleotide biosynthesis, secondary metabolism, senescence, and responses to both biotic and abiotic stresses, were identified in the vicinity of QTL.

5.
Front Plant Sci ; 12: 716437, 2021.
Article in English | MEDLINE | ID: mdl-34421969

ABSTRACT

Selenium biofortification of plants has been suggested as a method of enhancing dietary selenium intake to prevent deficiency and chronic disease in humans, while avoiding toxic levels of intake. Popular herbs such as basil (Ocimum basilicum L.), cilantro (Coriandrum sativum L.), and scallions (Allium fistulosum L.) present an opportunity for biofortification as these plants are used for added flavors to meals and are available as microgreens, young plants with increasing popularity in the consumer marketplace. In this study, basil, cilantro, and scallion microgreens were biofortified with sodium selenate under hydroponic conditions at various selenium concentrations to investigate the effects on yield, selenium content, other mineral contents (i.e., sodium, potassium, calcium, magnesium, phosphorus, copper, zinc, iron, manganese, sulfur, and boron), total phenol content, and antioxidant capacity [oxygen radical absorbance capacity (ORAC)]. The results showed that the selenium content increased significantly at all concentrations, with scallions demonstrating the largest increase. The effects on other minerals varied among herb species. Antioxidant capacity and total phenol content increased in all herbs at the highest selenium treatments, but basil and scallions demonstrated a decreased crop yield. Overall, these biofortified culinary herb microgreens are an ideal functional food for enhancing selenium, other dietary minerals, and antioxidants to benefit human health.

6.
Front Plant Sci ; 12: 623314, 2021.
Article in English | MEDLINE | ID: mdl-33719295

ABSTRACT

The use of light-emitting diodes (LEDs) in commercial greenhouse production is rapidly increasing because of technological advancements, increased spectral control, and improved energy efficiency. Research is needed to determine the value and efficacy of LEDs in comparison to traditional lighting systems. The objective of this study was to establish the impact of narrowband blue (B) and red (R) LED lighting ratios on flavor volatiles in hydroponic basil (Ocimum basilicum var. "Genovese") in comparison to a non-supplemented natural light (NL) control and traditional high-pressure sodium (HPS) lighting. "Genovese" basil was chosen because of its high market value and demand among professional chefs. Emphasis was placed on investigating concentrations of important flavor volatiles in response to specific ratios of narrowband B/R LED supplemental lighting (SL) and growing season. A total of eight treatments were used: one non-supplemented NL control, one HPS treatment, and six LED treatments (peaked at 447 nm/627 nm, ±20 nm) with progressive B/R ratios (10B/90R, 20B/80R, 30B/70R, 40B/60R, 50B/50R, and 60B/40R). Each SL treatment provided 8.64 mol ⋅ m-2 ⋅ d-1 (100 µmol ⋅ m-2 ⋅ s-1, 24 h ⋅ d-1). The daily light integral (DLI) of the NL control averaged 9.5 mol ⋅ m-2 ⋅ d-1 during the growth period (ranging from 4 to 18 mol ⋅ m-2 ⋅ d-1). Relative humidity averaged 50%, with day/night temperatures averaging 27.4°C/21.8°C, respectively. Basil plants were harvested 45 days after seeding, and volatile organic compound profiles were obtained by gas chromatography-mass spectrometry. Total terpenoid concentrations were dramatically increased during winter months under LED treatments, but still showed significant impacts during seasons with sufficient DLI and spectral quality. Many key flavor volatile concentrations varied significantly among lighting treatments and growing season. However, the concentrations of some compounds, such as methyl eugenol, were three to four times higher in the control and decreased significantly for basil grown under SL treatments. Maximum concentrations for each compound varied among lighting treatments, but most monoterpenes and diterpenes evaluated were highest under 20B/80R to 50B/50R. This study shows that supplemental narrowband light treatments from LED sources may be used to manipulate secondary metabolic resource allocation. The application of narrowband LED SL has great potential for improving overall flavor quality of basil and other high-value specialty herbs.

7.
Plant J ; 103(5): 1744-1766, 2020 08.
Article in English | MEDLINE | ID: mdl-32491251

ABSTRACT

Soybean nodulation is a highly controlled process that involves complex gene regulation at both transcriptional and post-transcriptional levels. In the present study, we profiled gene expression changes, alternative splicing events, and DNA methylation patterns during nodule formation, development, and senescence. The transcriptome data uncovered key transcription patterns of nodule development that included 9669 core genes and 7302 stage-specific genes. Alternative splicing analysis uncovered a total of 2323 genes that undergo alternative splicing events in at least one nodule developmental stage, with activation of exon skipping and repression of intron retention being the most common splicing events in nodules compared to roots. Approximately 40% of the differentially spliced genes were also differentially expressed at the same nodule developmental stage, implying a substantial association between gene expression and alternative splicing. Genome-wide-DNA methylation analysis revealed dynamic changes in nodule methylomes that were specific to each nodule stage, occurred in a sequence-specific manner, and impacted the expression of 1864 genes. An attractive hypothesis raised by our data is that increased DNA methylation may contribute to the efficiency of alternative splicing. Together, our results provide intriguing insights into the associations between gene expression, alternative splicing, and DNA methylation that may shape transcriptome complexity and proteome specificity in developing soybean nodules.


Subject(s)
Alternative Splicing , DNA Methylation , Gene Expression Regulation, Plant , Plant Root Nodulation , Alternative Splicing/genetics , Alternative Splicing/physiology , DNA Methylation/genetics , DNA Methylation/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/genetics , Genes, Plant/physiology , Plant Root Nodulation/genetics , Plant Root Nodulation/physiology , Root Nodules, Plant/growth & development , Root Nodules, Plant/metabolism , Glycine max/growth & development , Glycine max/metabolism
8.
Plants (Basel) ; 8(6)2019 Jun 08.
Article in English | MEDLINE | ID: mdl-31181725

ABSTRACT

Waterlogging occurs because of poor soil drainage and/or excessive rainfall and is a serious abiotic stress affecting plant growth because of declining oxygen supplied to submerged tissues. Although cucumber (Cucumis sativus L.) is sensitive to waterlogging, its ability to generate adventitious roots facilitates gas diffusion and increases plant survival when oxygen concentrations are low. To understand the physiological responses to waterlogging, a 10-day waterlogging experiment was conducted. The objective of this study was to measure the photosynthetic and key metabolites of cucumber plants under waterlogging conditions for 10 days. Plants were also harvested at the end of 10 days and analyzed for plant height (ht), leaf number and area, fresh mass (FM), dry mass (DM), chlorophyll (Chl), carotenoid (CAR), proline, and soluble sugars. Results indicated that cucumber plants subjected to the 10-day waterlogging stress conditions were stunted, had fewer leaves, and decreased leaf area, FM, and DM. There were differences in physiological performance, Chl, CAR, proline, and soluble sugars. Overall, waterlogging stress decreased net photosynthesis (A), having a negative effect on biomass accumulation. However, these decreases were also dependent on other factors, such as plant size, morphology, and water use efficiency (WUE) that played a role in the overall metabolism of the plant.

9.
Foods ; 8(5)2019 May 12.
Article in English | MEDLINE | ID: mdl-31083631

ABSTRACT

Typically, broccoli arrives at the store within 7-14 days of harvest and is kept refrigerated until purchased or considered waste. To date, information has been limited on how this time on the shelf or storage temperature affects the sensory attributes that contribute to broccoli purchase or repurchase. In this study, 100 consumers performed acceptance tests and a check-all-that-apply (CATA) section to characterize sensory changes in two cultivars of broccoli ('Diplomat' and 'Emerald Crown') stored at two temperatures (0 °C and 4 °C) over five time points: 0, 14, 21, 28, and 42 days. Due to quality degradation during storage, the overall liking of broccoli decreased regardless of holding temperature and variety. This was in accordance with a decrease in sweetness and an increase in bitterness intensity. However, there were differences between varieties in which Diplomat had more sensory changes at higher temperatures and only Emerald showed negative changes to its appearance in color. Lastly, the CATA data revealed the attributes responsible for modulating the consumer acceptance of broccoli such as tastes, colors and flavors (e.g., grassy, musty, dirt-like). This information can be used to better inform shelf-life determinations of broccoli. Additionally, these changes in taste, odor, texture, and color can inform those interested in investigating the biochemical processes related to broccoli storage.

10.
Plant Physiol ; 178(3): 1269-1283, 2018 11.
Article in English | MEDLINE | ID: mdl-30266747

ABSTRACT

Boron is an essential plant micronutrient that plays a structural role in the rhamnogalacturonan II component of the pectic cell wall. To prevent boron deficiency under limiting conditions, its uptake, distribution, and homeostasis are mediated by boric acid transporters and channel proteins. Among the membrane channels that facilitate boric acid uptake are the type II nodulin intrinsic protein (NIP) subfamily of aquaporin-like proteins. Arabidopsis (Arabidopsis thaliana) possesses three NIP II genes (NIP5;1, NIP6;1, and NIP7;1) that show distinct tissue expression profiles (predominantly expressed in roots, stem nodes, and developing flowers, respectively). Orthologs of each are represented in all dicots. Here, we show that purified and reconstituted NIP7;1 is a boric acid facilitator. By using native promoter-reporter fusions, we show that NIP7;1 is expressed predominantly in anthers of young flowers in a narrow developmental window, floral stages 9 and 10, with protein accumulation solely within tapetum cells, where it is localized to the plasma membrane. Under limiting boric acid conditions, loss-of-function T-DNA mutants (nip7;1-1 and nip7;1-2) show reduced fertility, including shorter siliques and an increase in aborted seeds, compared with the wild type. Under these conditions, nip7;1 mutant pollen grains show morphological defects, increased aggregation, defective exine cell wall formation, reduced germination frequency, and decreased viability. During stages 9 and 10, the tapetum is essential for supplying materials to the pollen microspore cell wall. We propose that NIP7;1 serves as a gated boric acid channel in developing anthers that aids in the uptake of this critical micronutrient by tapetal cells.


Subject(s)
Aquaporins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Boric Acids/metabolism , Gametogenesis, Plant/genetics , Pollen/genetics , Aquaporins/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Biological Transport , Boron/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Models, Molecular , Mutation , Phylogeny , Pollen/growth & development , Pollen/metabolism , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins
11.
J Sci Food Agric ; 97(3): 911-917, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27220007

ABSTRACT

BACKGROUND: Nutritionally important carotenoids in 21-day-old brassica microgreens increase following short and long-term exposure to narrow-band wavelengths from light-emitting diodes (LED). The present study aimed to measure the impact of: (1) fluorescent/incandescent light and different percentages of blue/red LED light and (2) different levels of nutrient fertility on biomass and pigment concentrations in 30-day-old 'Green Lance' Chinese kale (Brassica oleracea var. alboglabra). Kale plants were exposed to four light treatments and two fertility levels and were harvested 30 days after seeding and analyzed for nutritionally important shoot pigments. RESULTS: Kale under the fluorescent/incandescent light treatment had a significantly higher shoot fresh and dry mass. The shoot tissue concentrations of most pigment were significantly higher under blue/red LED light treatments. The higher fertility level resulted in higher concentrations for most pigments. Interestingly, the pool of xanthophyll cycle pigments and de-epoxidized xanthophylls was higher under all LED treatments. CONCLUSION: The results obtained in the present study support previous data demonstrating the stimulation of nutritionally important shoot tissue pigment concentrations following exposure to sole source blue/red LEDs compared to traditional lighting. Xanthophyll cycle flux was impacted by LEDs and this may support the role of zeaxanthin in blue light perception in leafy specialty crops. © 2016 Society of Chemical Industry.


Subject(s)
Brassica/metabolism , Fertilizers , Light , Pigments, Biological/biosynthesis , Plant Leaves/metabolism , Plant Shoots/metabolism , Xanthophylls/biosynthesis , Biofortification/methods , Brassica/chemistry , Brassica/growth & development , Brassica/radiation effects , Crop Production/methods , Fertilizers/adverse effects , Fluorescence , Humans , Hydroponics/methods , Incandescence , Kinetics , Light/adverse effects , Lighting/methods , Nutritive Value , Pigments, Biological/analysis , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/radiation effects , Plant Roots/chemistry , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/radiation effects , Plant Shoots/chemistry , Plant Shoots/growth & development , Plant Shoots/radiation effects , Up-Regulation/radiation effects , Xanthophylls/analysis , Zeaxanthins/analysis , Zeaxanthins/biosynthesis
12.
ScientificWorldJournal ; 2013: 513867, 2013.
Article in English | MEDLINE | ID: mdl-23606817

ABSTRACT

Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L.) were grown in a glasshouse under filtered UV radiation (control) or supplemental UV-B radiation [7.0 µ mol·m(-2) · s(-2) (2.68 W · m(-2))] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and ß -carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen "Pesoenyj" responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values.


Subject(s)
Allium/physiology , Carotenoids/metabolism , Chlorophyll/metabolism , Pigmentation/radiation effects , Plant Shoots/physiology , Ultraviolet Rays , Allium/radiation effects , Pigmentation/physiology , Plant Shoots/radiation effects , Radiation Dosage
13.
J Agric Food Chem ; 61(1): 202-9, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23240576

ABSTRACT

This study investigated the impact of Se on glucosinolates (GSs) and isothiocyanates (ITCs). Plants of Arabidopsis thaliana cv. Columbia and a rapid-cycling base population of Brassica oleracea were grown hydroponically under different Se and S concentrations. The objective was to determine the effects of increasing Se and S concentrations on the GSs and ITCs. The results indicate that S and Se concentrations increased in A. thaliana and B. oleracea leaf tissue in response to increasing Se treatments. Aliphatic and total GSs decreased significantly (P ≤ 0.001) from 0.0 to 3.2 mg Se L(-1) in B. oleracea and A. thaliana leaf tissues. Consequently, aliphatic and total ITCs decreased significantly (P ≤ 0.001) from 0.0 to 3.2 mg Se L(-1) in B. oleracea and A. thaliana leaf tissues. Data demonstrate that high levels of anticarcinogenic GSs can be maintained as the Se concentration is increased to 0.8 mg L(-1). Thus, it is feasible to increase Se to beneficial dietary levels without compromising GS concentrations.


Subject(s)
Arabidopsis/metabolism , Brassica/metabolism , Glucosinolates/metabolism , Isothiocyanates/metabolism , Selenium/pharmacology , Sulfur/metabolism , Plant Leaves/metabolism
14.
Eur J Cancer ; 46(18): 3365-74, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20709524

ABSTRACT

Persuasive epidemiological and experimental evidence suggests that dietary flavonoids have anti-cancer activity. Since conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of most cancer types, including colorectal neoplasia, there is an urgent need to develop alternative approaches for the management of cancer. We sought to develop the best flavonoids for the inhibition of cell growth, and apigenin (flavone) proved to be the most promising compound in colorectal cancer cell growth arrest. Subsequently, we found that pro-apoptotic proteins (NAG-1 and p53) and cell cycle inhibitor (p21) were induced in the presence of apigenin, and kinase pathways, including PKCδ and ataxia telangiectasia mutated (ATM), play an important role in activating these proteins. The data generated by in vitro experiments were confirmed in an animal study using APC(MIN+) mice. Apigenin is able to reduce polyp numbers, accompanied by increasing p53 activation through phosphorylation in animal models. Our data suggest apparent beneficial effects of apigenin on colon cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apigenin/pharmacology , Colorectal Neoplasms/therapy , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Growth Differentiation Factor 15/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Cell Proliferation , Colorectal Neoplasms/etiology , Enzyme Inhibitors/pharmacology , Humans , Mice , Phosphorylation/drug effects , Phosphotransferases/antagonists & inhibitors , Tumor Cells, Cultured
15.
J Agric Food Chem ; 57(14): 6362-8, 2009 Jul 22.
Article in English | MEDLINE | ID: mdl-19537793

ABSTRACT

The herbicide mesotrione inhibits a critical enzyme, phytoene desaturase, in plant carotenoid biosynthesis. Mesotrione is currently labeled for selective weed control in sweet corn ( Zea mays var. rugosa). Mesotrione applied alone, or in mixtures with the photosystem II inhibitor atrazine, acted to increase concentrations of kernel antheraxanthin, lutein, and zeaxanthin carotenoids in several sweet corn genotypes. Kernel lutein and zeaxanthin levels significantly increased 15.6% after mesotrione + atrazine early postemergence applications, as compared to the control treatment. It appears that mesotrione applications resulted in greater pools of kernel carotenoids once the sweet corn genotypes expressing moderate injury overcame the initial herbicidal photo-oxidative stress. This is the first report of herbicides directly up-regulating the carotenoid biosynthetic pathway in corn kernels, which is associated with the nutritional quality of sweet corn. Enhanced accumulation of lutein and zeaxanthin is important because dietary carotenoids function in suppressing aging eye diseases such as macular degeneration, now affecting 1.75 million older Americans.


Subject(s)
Atrazine/administration & dosage , Carotenoids/analysis , Cyclohexanones/administration & dosage , Herbicides/administration & dosage , Seeds/chemistry , Zea mays/chemistry , Carotenoids/biosynthesis , Cyclohexanones/analysis , Drug Synergism , Enzyme Inhibitors/administration & dosage , Genotype , Oxidoreductases/antagonists & inhibitors , Seeds/drug effects , Seeds/metabolism , Zea mays/genetics , Zea mays/growth & development
16.
Pest Manag Sci ; 65(6): 640-4, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19235182

ABSTRACT

BACKGROUND: Mesotrione is a carotenoid biosynthesis-inhibiting herbicide currently labeled for crabgrass (Digitaria spp.) control. Mesotrione control of large crabgrass has been reported to vary with temperature and relative humidity; however, the effect of irradiance on mesotrione efficacy has not previously been reported. Likewise, little is known about pigment concentrations of Digitaria spp. The present research investigated the effects of mesotrione on large crabgrass, Digitaria sanguinalis (L.) Scop., control and pigment concentrations under varying irradiance at three temperatures. RESULTS: Mesotrione (0.28 kg ha(-1)) control of large crabgrass did not differ between temperature levels (18, 26 and 32 degrees C). Control was similar at tested irradiance levels (600, 1100 and 1600 micromol m(-2) s(-1)). Mesotrione reduced large crabgrass chlorophyll a, chlorophyll b and total carotenoid concentrations, as well as chlorophyll a to b ratios. Treated plant bleaching was highest 7 days after treatment (DAT) but decreased by 21 DAT. Treated plants were less than 10% necrotic 3 and 7 DAT but nearly 35% necrotic 21 DAT. Treated large crabgrass bleaching was highest and photochemical efficiency was lowest 7 DAT. These results indicate that some plant recovery occurs prior to 21 DAT. CONCLUSION: Although mesotrione efficacy has previously been reported to vary according to environmental factors, mesotrione control of large crabgrass did not vary with measured temperature and irradiance levels in this study. On account of crabgrass convalescence, secondary applications of mesotrione may control large crabgrass more effectively when applied prior to 21 DAT.


Subject(s)
Carotenoids/metabolism , Chlorophyll/metabolism , Cyclohexanones/pharmacology , Digitaria/drug effects , Ecosystem , Herbicides/pharmacology , Digitaria/metabolism , Pigmentation/drug effects
17.
J Agric Food Chem ; 56(19): 9133-9, 2008 Oct 08.
Article in English | MEDLINE | ID: mdl-18788815

ABSTRACT

Mesotrione is a carotenoid biosynthesis inhibiting herbicide, which is being evaluated for use in turfgrass. Carotenoids are important light harvesting and photoprotecting pigments that dissipate and quench excess light energy. The effects of mesotrione on carotenoid concentrations in turf and weed species, such as perennial ryegrass (Lolium perenne L.), are poorly understood. Mesotrione injury to perennial ryegrass has been reported, and symptomology may differ due to postapplication environmental factors such as irradiance and temperature. Research was conducted to investigate the effects of mesotrione on perennial ryegrass under varying irradiance (600, 1100, or 1600 micromol/m (2)/s) at three different temperatures (18, 26, and 34 degrees C). Postapplication irradiance and temperature levels did not affect visual injury symptoms in perennial ryegrass. Bleaching of treated plants was highest 7 days after treatment (DAT; 8%) and recovered to nontreated levels by 21 DAT. Mesotrione applications did not decrease perennial ryegrass foliar biomass accumulations. Carotenoid concentrations of nontreated plants were similar to those reported in creeping bentgrass and many green leafy vegetable crops. However, chlorophyll a and b, beta-carotene, lutein, and violaxanthin concentrations decreased due to mesotrione applications, while phytoene and zeaxanthin, a photoprotecting carotenoid, increased. The photochemical efficiency (F v/ F m) of treated plants was lower than nontreated plants at 3 and 7 DAT; however, treated plants recovered to nontreated levels 21 DAT. Results indicate that postapplication irradiance and temperature levels may not affect mesotrione efficacy in perennial ryegrass. Preferential accumulation of zeaxanthin following mesotrione applications may be a stress-related response, which may reduce light harvesting complex size and directly quench excess light energy.


Subject(s)
Carotenoids/analysis , Cyclohexanones/pharmacology , Environment , Herbicides/pharmacology , Lolium/chemistry , Lolium/drug effects , Chromatography, High Pressure Liquid , Light , Pigments, Biological/analysis , Temperature
18.
Mycorrhiza ; 18(3): 115-21, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18228050

ABSTRACT

Stomatal conductance (gs) and transpiration rates vary widely across plant species. Leaf hydraulic conductance (k leaf) tends to change with g (s), to maintain hydraulic homeostasis and prevent wide and potentially harmful fluctuations in transpiration-induced water potential gradients across the leaf (Delta Psi leaf). Because arbuscular mycorrhizal (AM) symbiosis often increases gs in the plant host, we tested whether the symbiosis affects leaf hydraulic homeostasis. Specifically, we tested whether k leaf changes with gs to maintain Delta Psi leaf or whether Delta Psi leaf differs when gs differs in AM and non-AM plants. Colonization of squash plants with Glomus intraradices resulted in increased gs relative to non-AM controls, by an average of 27% under amply watered, unstressed conditions. Stomatal conductance was similar in AM and non-AM plants with exposure to NaCl stress. Across all AM and NaCl treatments, k leaf did change in synchrony with gs (positive correlation of gs and k leaf), corroborating leaf tendency toward hydraulic homeostasis under varying rates of transpirational water loss. However, k leaf did not increase in AM plants to compensate for the higher gs of unstressed AM plants relative to non-AM plants. Consequently, Delta Psi leaf did tend to be higher in AM leaves. A trend toward slightly higher Delta Psi leaf has been observed recently in more highly evolved plant taxa having higher productivity. Higher Delta Psi leaf in leaves of mycorrhizal plants would therefore be consistent with the higher rates of gas exchange that often accompany mycorrhizal symbiosis and that are presumed to be necessary to supply the carbon needs of the fungal symbiont.


Subject(s)
Cucurbita/microbiology , Mycorrhizae/physiology , Water/metabolism , Cucurbita/physiology , Membrane Potentials , Plant Leaves/physiology , Plant Roots/microbiology , Plant Stomata/physiology , Plant Transpiration
19.
J Agric Food Chem ; 55(26): 10628-34, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18052091

ABSTRACT

Watercress (Nasturtium officinale R. Br.) is a perennial herb rich in the secondary metabolites of glucosinolates and carotenoids. 2-phenethyl isothiocyanate, the predominate isothiocyanate hydrolysis product in watercress, can reduce carcinogen activation through inhibition of phase I enzymes and induction of phase II enzymes. Sulfur (S) and nitrogen (N) have been shown to influence concentrations of both glucosinolates and carotenoids in a variety of vegetable crops. Our research objectives were to determine how several levels of N and S fertility interact to affect watercress plant tissue biomass production, tissue C/N ratios, concentrations of plant pigments, and glucosinolate concentrations. Watercress was grown using nutrient solution culture under a three by three factorial arrangement, with three S (8, 16, and 32 mg/L) and three N (6, 56, and 106 mg/L) fertility concentrations. Watercress shoot tissue biomass, tissue %N, and tissue C/N ratios were influenced by N but were unaffected by changes in S concentrations or by the interaction of NxS. Tissue pigment concentrations of beta-carotene, lutein, 5,6-epoxylutein, neoxanthin, zeaxanthin, and the chlorophyll pigments responded to changes in N treatment concentrations but were unaffected by S concentrations or through N x S interactions. Watercress tissue concentrations of aromatic, indole, and total glucosinolate concentrations responded to changes in N treatments; whereas aliphatic, aromatic, and total glucosinolates responded to changes in S treatment concentrations. Individual glucosinolates of glucobrassicin, 4-methoxyglucobrassicin, and gluconasturriin responded to N fertility treatments, while gluconapin, glucobrassicin, and gluconasturiin responded to changes in S fertility concentrations. Increases in carotenoid and glucosinolate concentrations through fertility management would be expected to influence the nutritional value of watercress in human diets.


Subject(s)
Carotenoids/analysis , Glucosinolates/analysis , Nasturtium/chemistry , Nasturtium/drug effects , Nitrogen/pharmacology , Sulfur/pharmacology , Biomass , Chlorophyll/analysis , Nasturtium/growth & development
20.
BMC Biol ; 4: 30, 2006 Sep 05.
Article in English | MEDLINE | ID: mdl-16953894

ABSTRACT

BACKGROUND: Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. RESULTS: It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. CONCLUSION: Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans.


Subject(s)
Nitrogen/chemistry , Phosphorus/chemistry , RNA/chemistry , Ribosomes/chemistry , Escherichia coli/physiology , Models, Biological , Mycobacterium bovis/physiology , Neurospora crassa/physiology , Protein Biosynthesis , Prototheca/physiology , Saccharomyces cerevisiae/physiology , Selenomonas/physiology , Streptomyces coelicolor/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...