Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1864(11): 184030, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35988722

ABSTRACT

Homeoprotein transcription factors have the property of interacting with membranes through their DNA-binding homeodomain, which is involved in unconventional internalization and secretion. Both processes depend on membrane-translocating events but their detailed molecular mechanisms are still poorly understood. We have previously characterized the conformational properties of Engrailed 2 homeodomain (EnHD) in aqueous solution and in micelles as membrane-mimetic environments. In the present study, we used small isotropic lipid bicelles as a more relevant membrane-mimetic model to characterize the membrane-bound state of EnHD. We show that lipid bicelles, in contrast to micelles, adequately reproduce the requirement of anionic lipids in the membrane binding and conformational transition of EnHD. The fold-unfold transition of EnHD induced by anionic lipids was characterized by NMR using 1H, 13C, 15N chemical shifts, nuclear Overhauser effects, residual dipolar couplings, intramolecular and intermolecular paramagnetic relaxation enhancements induced by site-directed spin-label or paramagnetic lipid probe, respectively. A global unpacking of EnHD helices is observed leading to a loss of the native fold. However, near-native propensities of EnHD backbone conformation are maintained in membrane environment, including not only the three helices but also the turn connecting helices H2 and H3. NMR and coarse-grained molecular dynamics simulations reveal that the EnHD adopts a shallow insertion in the membrane, with the three helices oriented parallel to the membrane. EnHD explores extended conformations and closed U-shaped conformations, which are stabilized by anionic lipid recruitment.


Subject(s)
Micelles , Molecular Dynamics Simulation , Homeodomain Proteins/chemistry , Lipids , Protein Structure, Secondary
2.
Sci Rep ; 9(1): 7438, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31092861

ABSTRACT

The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a PDZ (PSD-95/Dlg/ZO-1) domain-containing phosphatase with a tumor-suppressive or a tumor-promoting role in many cancers. Interestingly, the high-risk genital human papillomavirus (HPV) types 16 and 18 target the PDZ domain of PTPN3. The presence of a PDZ binding motif (PBM) on E6 confers interaction with a number of different cellular PDZ domain-containing proteins and is a marker of high oncogenic potential. Here, we report the molecular basis of interaction between the PDZ domain of PTPN3 and the PBM of the HPV E6 protein. We combined biophysical, NMR and X-ray experiments to investigate the structural and functional properties of the PDZ domain of PTPN3. We showed that the C-terminal sequences from viral proteins encompassing a PBM interact with PTPN3-PDZ with similar affinities to the endogenous PTPN3 ligand MAP kinase p38γ. PBM binding stabilizes the PDZ domain of PTPN3. We solved the X-ray structure of the PDZ domain of PTPN3 in complex with the PBM of the HPV E6 protein. The crystal structure and the NMR chemical shift mapping of the PTPN3-PDZ/peptide complex allowed us to pinpoint the main structural determinants of recognition of the C-terminal sequence of the E6 protein and the long-range perturbations induced upon PBM binding.


Subject(s)
DNA-Binding Proteins/metabolism , Human papillomavirus 16/metabolism , Human papillomavirus 18/metabolism , Oncogene Proteins, Viral/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 3/metabolism , Repressor Proteins/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Humans , Ligands , Mitogen-Activated Protein Kinase 12/metabolism , PDZ Domains , Papillomavirus Infections/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Binding , Protein Stability , Protein Tyrosine Phosphatase, Non-Receptor Type 3/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 3/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...