Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Biol ; 20(1): 189, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36002835

ABSTRACT

BACKGROUND: T cell activation leads to increased expression of the receptor for the iron transporter transferrin (TfR) to provide iron required for the cell differentiation and clonal expansion that takes place during the days after encounter with a cognate antigen. However, T cells mobilise TfR to their surface within minutes after activation, although the reason and mechanism driving this process remain unclear. RESULTS: Here we show that T cells transiently increase endocytic uptake and recycling of TfR upon activation, thereby boosting their capacity to import iron. We demonstrate that increased TfR recycling is powered by a fast endocytic sorting pathway relying on the membrane proteins flotillins, Rab5- and Rab11a-positive endosomes. Our data further reveal that iron import is required for a non-canonical signalling pathway involving the kinases Zap70 and PAK, which controls adhesion of the integrin LFA-1 and eventually leads to conjugation with antigen-presenting cells. CONCLUSIONS: Altogether, our data suggest that T cells boost their iron importing capacity immediately upon activation to promote adhesion to antigen-presenting cells.


Subject(s)
Receptors, Transferrin , Transferrin , Endocytosis/physiology , Endosomes/metabolism , Iron/metabolism , Receptors, Transferrin/metabolism , T-Lymphocytes , Transferrin/metabolism
2.
Front Immunol ; 12: 702453, 2021.
Article in English | MEDLINE | ID: mdl-34603281

ABSTRACT

Dendritic cells (DCs) are potent and versatile professional antigen-presenting cells and central for the induction of adaptive immunity. The ability to migrate and transport peripherally acquired antigens to draining lymph nodes for subsequent cognate T cell priming is a key feature of DCs. Consequently, DC-based immunotherapies are used to elicit tumor-antigen specific T cell responses in cancer patients. Understanding chemokine-guided DC migration is critical to explore DCs as cellular vaccines for immunotherapeutic approaches. Currently, research is hampered by the lack of appropriate human cellular model systems to effectively study spatio-temporal signaling and CCR7-driven migration of human DCs. Here, we report that the previously established human neoplastic cell line CAL-1 expresses the human DC surface antigens CD11c and HLA-DR together with co-stimulatory molecules. Importantly, if exposed for three days to GM-CSF, CAL-1 cells induce the endogenous expression of the chemokine receptor CCR7 upon encountering the clinically approved TLR7/8 agonist Resiquimod R848 and readily migrate along chemokine gradients. Further, we demonstrate that CAL-1 cells can be genetically modified to express fluorescent (GFP)-tagged reporter proteins to study and visualize signaling or can be gene-edited using CRISPR/Cas9. Hence, we herein present the human CAL-1 cell line as versatile and valuable cellular model system to effectively study human DC migration and signaling.


Subject(s)
Cell Line, Tumor , Cell Movement/immunology , Dendritic Cells/physiology , Receptors, CCR7/metabolism , Humans
3.
Sci Signal ; 14(696)2021 08 17.
Article in English | MEDLINE | ID: mdl-34404752

ABSTRACT

The pleiotropic chemokine CXCL12 is involved in diverse physiological and pathophysiological processes, including embryogenesis, hematopoiesis, leukocyte migration, and tumor metastasis. It is known to engage the classical receptor CXCR4 and the atypical receptor ACKR3. Differential receptor engagement can transduce distinct cellular signals and effects as well as alter the amount of free, extracellular chemokine. CXCR4 binds both monomeric and the more commonly found dimeric forms of CXCL12, whereas ACKR3 binds monomeric forms. Here, we found that CXCL12 also bound to the atypical receptor ACKR1 (previously known as Duffy antigen/receptor for chemokines or DARC). In vitro nuclear magnetic resonance spectroscopy and isothermal titration calorimetry revealed that dimeric CXCL12 bound to the extracellular N terminus of ACKR1 with low nanomolar affinity, whereas the binding affinity of monomeric CXCL12 was orders of magnitude lower. In transfected MDCK cells and primary human Duffy-positive erythrocytes, a dimeric, but not a monomeric, construct of CXCL12 efficiently bound to and internalized with ACKR1. This interaction between CXCL12 and ACKR1 provides another layer of regulation of the multiple biological functions of CXCL12. The findings also raise the possibility that ACKR1 can bind other dimeric chemokines, thus potentially further expanding the role of ACKR1 in chemokine retention and presentation.


Subject(s)
Chemokine CXCL12 , Receptors, CXCR4 , Cell Movement , Chemokine CXCL12/genetics , Duffy Blood-Group System , Humans , Receptors, CXCR4/genetics , Receptors, Cell Surface , Signal Transduction
4.
Front Cell Dev Biol ; 8: 285, 2020.
Article in English | MEDLINE | ID: mdl-32411706

ABSTRACT

Leukocyte migration across vessels into and within peripheral and lymphoid tissues is essential for host defense against invading pathogens. Leukocytes are specialized in sensing a variety of guidance cues and to integrate environmental stimuli to navigate in a timely and spatially controlled manner. These extracellular signals must be transmitted across the leukocyte's plasma membrane in a way that intracellular signaling cascades enable directional cell movement. Therefore, the composition of the membrane in concert with proteins that influence the compartmentalization of the plasma membrane or contribute to delineate intracellular signaling molecules are key in controlling leukocyte navigation. This becomes evident by the fact that mislocalization of membrane proteins is known to deleteriously affect cellular functions that may cause diseases. In this review we summarize recent advances made in the understanding of how membrane cholesterol levels modulate chemokine receptor signaling and hence leukocyte trafficking. Moreover, we provide an overview on the role of membrane scaffold proteins, particularly tetraspanins, flotillins/reggies, and caveolins in controlling leukocyte migration both in vitro and in vivo.

5.
J Immunol ; 203(9): 2377-2387, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31548330

ABSTRACT

Flotillin-1 (Flot1) is an evolutionary conserved, ubiquitously expressed lipid raft-associated scaffolding protein. Migration of Flot1-deficient neutrophils is impaired because of a decrease in myosin II-mediated contractility. Flot1 also accumulates in the uropod of polarized T cells, suggesting an analogous role in T cell migration. In this study, we analyzed morphology and migration parameters of murine wild-type and Flot1-/- CD8+ T cells using in vitro assays and intravital two-photon microscopy of lymphoid and nonlymphoid tissues. Flot1-/- CD8+ T cells displayed significant alterations in cell shape and motility parameters in vivo but showed comparable homing to lymphoid organs and intact in vitro migration to chemokines. Furthermore, their clonal expansion and infiltration into nonlymphoid tissues during primary and secondary antiviral immune responses was comparable to wild-type CD8+ T cells. Taken together, Flot1 plays a detectable but unexpectedly minor role for CD8+ T cell behavior under physiological conditions.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Membrane Proteins/physiology , Animals , CD8-Positive T-Lymphocytes/physiology , Cell Movement , Epidermis/immunology , Female , Immunologic Memory , Lymphocyte Activation , Male , Membrane Microdomains/physiology , Mice , Mice, Inbred C57BL
6.
Int J Mol Sci ; 19(12)2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30518137

ABSTRACT

Chemokines are essential guidance cues orchestrating cell migration in health and disease. Cognate chemokine receptors sense chemokine gradients over short distances to coordinate directional cell locomotion. The chemokines CCL19 and CCL21 are essential for recruiting CCR7-expressing dendritic cells bearing pathogen-derived antigens and lymphocytes to lymph nodes, where the two cell types meet to launch an adaptive immune response against the invading pathogen. CCR7-expressing cancer cells are also recruited by CCL19 and CCL21 to metastasize in lymphoid organs. In contrast, atypical chemokine receptors (ACKRs) do not transmit signals required for cell locomotion but scavenge chemokines. ACKR4 is crucial for internalizing and degrading CCL19 and CCL21 to establish local gradients, which are sensed by CCR7-expressing cells. Here, we describe the production of fluorescently tagged chemokines by fusing CCL19 and CCL21 to monomeric red fluorescent protein (mRFP). We show that purified CCL19-mRFP and CCL21-mRFP are versatile and powerful tools to study CCR7 and ACKR4 functions, such as receptor trafficking and chemokine scavenging, in a spatiotemporal fashion. We demonstrate that fluorescently tagged CCL19 and CCL21 permit the visualization and quantification of chemokine gradients in real time, while CCR7-expressing leukocytes and cancer cells sense the guidance cues and migrate along the chemokine gradients.


Subject(s)
Chemokine CCL19/metabolism , Chemokine CCL21/metabolism , Fluorescent Dyes/metabolism , Receptors, CCR7/metabolism , Receptors, CCR/metabolism , Animals , Cell Movement , Collagen/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , HEK293 Cells , Humans , Mice , Time-Lapse Imaging
7.
Nat Commun ; 9(1): 1597, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29686427

ABSTRACT

Endocytosis of surface receptors and their polarized recycling back to the plasma membrane are central to many cellular processes, such as cell migration, cytokinesis, basolateral polarity of epithelial cells and T cell activation. Little is known about the mechanisms that control the organization of recycling endosomes and how they connect to receptor endocytosis. Here, we follow the endocytic journey of the T cell receptor (TCR), from internalization at the plasma membrane to recycling back to the immunological synapse. We show that TCR triggering leads to its rapid uptake through a clathrin-independent pathway. Immediately after internalization, TCR is incorporated into a mobile and long-lived endocytic network demarked by the membrane-organizing proteins flotillins. Although flotillins are not required for TCR internalization, they are necessary for its recycling to the immunological synapse. We further show that flotillins are essential for T cell activation, supporting TCR nanoscale organization and signaling.


Subject(s)
Endocytosis/physiology , Lymphocyte Activation/physiology , Membrane Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Immunological Synapses/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Signal Transduction/immunology
8.
Cell Rep ; 14(5): 1206-1217, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26804903

ABSTRACT

Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Forkhead Transcription Factors/metabolism , Immunologic Memory , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Carrier Proteins/metabolism , Cell Differentiation/genetics , Cell Nucleus/metabolism , Forkhead Box Protein O1 , Immunologic Memory/genetics , Interleukin-2/biosynthesis , Mechanistic Target of Rapamycin Complex 2 , Mice, Inbred C57BL , Mice, Knockout , Rapamycin-Insensitive Companion of mTOR Protein , T-Box Domain Proteins/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...