Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39038102

ABSTRACT

BACKGROUND: A partnered evaluation project with Veterans Health Administration Physical Medicine and Rehabilitation program office uses a partner-engaged approach to characterize and evaluate the national implementation of traumatic brain injury (TBI)Intensive Evaluation and Treatment Program (IETP). OBJECTIVE: This paper illustrates a partner-engaged approach to contextualizing the IETP within an implementation research logic model (IRLM) to inform program sustainment and spread. SETTING: The project was conducted at five IETP sites: Tampa, Richmond, San Antonio, Palo Alto, and Minneapolis. PARTICIPANTS: Partners included national and site program leaders, clinicians, Department of Defense Referral Representatives, and researchers. Participants included program staff (n = 46) and Service Members/Veterans (n = 48). DESIGN: This paper represents a component of a larger participatory-based concurrent mixed methods quality improvement project. MAIN MEASURES: Participant scripts and demographic surveys. METHODS: Datasets were analyzed using rapid iterative content analysis; IETP model was iteratively revised with partner feedback. Each site had an IETP clinical team member participate. The IRLM was contextualized within the Consolidated Framework for Implementation Research (CFIR); systematic consensus building expert reviewed implementation strategies; RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance); and Implementation Outcomes Framework (IOF). RESULTS: Analyses and partner feedback identified key characteristics, determinants, implementation strategies, mechanisms, and outcomes. CONCLUSIONS: This partner-engaged IRLM informs implementation and sustainment of a rehabilitation program for individuals with TBI. Findings will be leveraged to examine implementation, standardize core outcome measurements, and inform knowledge translation.

2.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35439168

ABSTRACT

CD4+ Th cells play a key role in orchestrating immune responses, but the identity of the CD4+ Th cells involved in the antitumor immune response remains to be defined. We analyzed the immune cell infiltrates of head and neck squamous cell carcinoma and colorectal cancers and identified a subset of CD4+ Th cells distinct from FOXP3+ Tregs that coexpressed programmed cell death 1 (PD-1) and ICOS. These tumor-infiltrating lymphocyte CD4+ Th cells (CD4+ Th TILs) had a tissue-resident memory phenotype, were present in MHC class II-rich areas, and proliferated in the tumor, suggesting local antigen recognition. The T cell receptor repertoire of the PD-1+ICOS+ CD4+ Th TILs was oligoclonal, with T cell clones expanded in the tumor, but present at low frequencies in the periphery. Finally, these PD-1+ICOS+ CD4+ Th TILs were shown to recognize both tumor-associated antigens and tumor-specific neoantigens. Our findings provide an approach for isolating tumor-reactive CD4+ Th TILs directly ex vivo that will help define their role in the antitumor immune response and potentially improve future adoptive T cell therapy approaches.


Subject(s)
Head and Neck Neoplasms , Programmed Cell Death 1 Receptor , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Head and Neck Neoplasms/pathology , Humans , Inducible T-Cell Co-Stimulator Protein , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor/genetics
3.
Cancer Immunol Res ; 9(6): 602-611, 2021 06.
Article in English | MEDLINE | ID: mdl-33820811

ABSTRACT

Microsatellite-stable (MSS) colorectal cancers are characterized by low mutation burden and limited immune-cell infiltration and thereby respond poorly to immunotherapy. Here, we report a case of metastatic MSS colorectal cancer with a robust anticancer immune response. The primary tumor was resected in 2012, and the patient received several cycles of chemotherapy until 2017. In 2018, the patient underwent a left hepatectomy to remove a new metastasis. Analysis of the metastatic tumor revealed a strong CD8+ T-cell response. A high frequency of CD8+ T cells coexpressed CD39 and CD103, a phenotype characteristic of tumor-reactive cells. Using whole-exome sequencing, we identified somatic mutations that generated peptides recognized by CD39+CD103+CD8+ T cells. The observed reactivity against the tumor was dominated by the response to a single mutation that emerged in the metastasis. Somatic mutations that were not immunogenic in the primary tumor led to robust CD8+ T-cell expansion later during disease progression. Our data suggest that the cytotoxic treatment regimen received by the patient might be responsible for this effect. Hence, the capacity of cytotoxic regimens to prime the immune system in colorectal cancer patients should be investigated further and might provide a rationale for combination with immunotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/immunology , Liver Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Antigens, CD/immunology , Apyrase/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Hepatectomy , Humans , Integrin alpha Chains/immunology , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Male , Middle Aged
4.
Nat Commun ; 11(1): 5406, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106495

ABSTRACT

Mutations in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) cause Blau syndrome, an inflammatory disorder characterized by uveitis. The antimicrobial functions of Nod2 are well-established, yet the cellular mechanisms by which dysregulated Nod2 causes uveitis remain unknown. Here, we report a non-conventional, T cell-intrinsic function for Nod2 in suppression of Th17 immunity and experimental uveitis. Reconstitution of lymphopenic hosts with Nod2-/- CD4+ T cells or retina-specific autoreactive CD4+ T cells lacking Nod2 reveals a T cell-autonomous, Rip2-independent mechanism for Nod2 in uveitis. In naive animals, Nod2 operates downstream of TCR ligation to suppress activation of memory CD4+ T cells that associate with an autoreactive-like profile involving IL-17 and Ccr7. Interestingly, CD4+ T cells from two Blau syndrome patients show elevated IL-17 and increased CCR7. Our data define Nod2 as a T cell-intrinsic rheostat of Th17 immunity, and open new avenues for T cell-based therapies for Nod2-associated disorders such as Blau syndrome.


Subject(s)
Nod2 Signaling Adaptor Protein/immunology , Th17 Cells/immunology , Uveitis/immunology , Uveitis/prevention & control , Animals , Arthritis/genetics , Arthritis/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Humans , Interleukin-17/genetics , Interleukin-17/immunology , Male , Mice , Mice, Inbred C57BL , Nod2 Signaling Adaptor Protein/genetics , Receptors, CCR7/genetics , Receptors, CCR7/immunology , Sarcoidosis , Synovitis/genetics , Synovitis/immunology , Uveitis/genetics
5.
J Immunol ; 201(7): 1889-1898, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30150283

ABSTRACT

Arthritis in a genetically susceptible SKG strain of mice models a theoretical paradigm wherein autoimmune arthritis arises because of interplay between preexisting autoreactive T cells and environmental stimuli. SKG mice have a point mutation in ZAP-70 that results in attenuated TCR signaling, altered thymic selection, and spontaneous production of autoreactive T cells that cause arthritis following exposure to microbial ß-glucans. In this study, we identify Nod2, an innate immune receptor, as a critical suppressor of arthritis in SKG mice. SKG mice deficient in Nod2 (Nod2-/-SKG) developed a dramatically exacerbated form of arthritis, which was independent of sex and microbiota, but required the skg mutation in T cells. Worsened arthritis in Nod2-/-SKG mice was accompanied by expansion of Th17 cells, which to some measure coproduced TNF, GM-CSF, and IL-22, along with elevated IL-17A levels within joint synovial fluid. Importantly, neutralization of IL-17A mitigated arthritis in Nod2-/-SKG mice, indicating that Nod2-mediated protection occurs through suppression of the Th17 response. Nod2 deficiency did not alter regulatory T cell development or function. Instead, Nod2 deficiency resulted in an enhanced fundamental ability of SKG CD4+ T cells (from naive mice) to produce increased levels of IL-17 and to passively transfer arthritis to lymphopenic recipients on a single-cell level. These data reveal a previously unconsidered role for T cell-intrinsic Nod2 as an endogenous negative regulator of Th17 responses and arthritogenic T cells. Based on our findings, future studies aimed at understanding a negative regulatory function of Nod2 within autoreactive T cells could provide novel therapeutic strategies for treatment of patients with arthritis.


Subject(s)
Arthritis/immunology , Autoimmune Diseases/immunology , Nod2 Signaling Adaptor Protein/metabolism , Th17 Cells/immunology , Animals , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Humans , Immune Tolerance , Immunity, Innate , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Mutant Strains , Mutation/genetics , Nod2 Signaling Adaptor Protein/genetics , ZAP-70 Protein-Tyrosine Kinase/genetics , beta-Glucans/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...