Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Radiology ; 310(1): e230981, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38193833

ABSTRACT

Background Multiple commercial artificial intelligence (AI) products exist for assessing radiographs; however, comparable performance data for these algorithms are limited. Purpose To perform an independent, stand-alone validation of commercially available AI products for bone age prediction based on hand radiographs and lung nodule detection on chest radiographs. Materials and Methods This retrospective study was carried out as part of Project AIR. Nine of 17 eligible AI products were validated on data from seven Dutch hospitals. For bone age prediction, the root mean square error (RMSE) and Pearson correlation coefficient were computed. The reference standard was set by three to five expert readers. For lung nodule detection, the area under the receiver operating characteristic curve (AUC) was computed. The reference standard was set by a chest radiologist based on CT. Randomized subsets of hand (n = 95) and chest (n = 140) radiographs were read by 14 and 17 human readers, respectively, with varying experience. Results Two bone age prediction algorithms were tested on hand radiographs (from January 2017 to January 2022) in 326 patients (mean age, 10 years ± 4 [SD]; 173 female patients) and correlated strongly with the reference standard (r = 0.99; P < .001 for both). No difference in RMSE was observed between algorithms (0.63 years [95% CI: 0.58, 0.69] and 0.57 years [95% CI: 0.52, 0.61]) and readers (0.68 years [95% CI: 0.64, 0.73]). Seven lung nodule detection algorithms were validated on chest radiographs (from January 2012 to May 2022) in 386 patients (mean age, 64 years ± 11; 223 male patients). Compared with readers (mean AUC, 0.81 [95% CI: 0.77, 0.85]), four algorithms performed better (AUC range, 0.86-0.93; P value range, <.001 to .04). Conclusions Compared with human readers, four AI algorithms for detecting lung nodules on chest radiographs showed improved performance, whereas the remaining algorithms tested showed no evidence of a difference in performance. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Omoumi and Richiardi in this issue.


Subject(s)
Artificial Intelligence , Software , Humans , Female , Male , Child , Middle Aged , Retrospective Studies , Algorithms , Lung
2.
Radiol Artif Intell ; 3(4): e200260, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34350413

ABSTRACT

PURPOSE: To compare the performance of a convolutional neural network (CNN) to that of 11 radiologists in detecting scaphoid bone fractures on conventional radiographs of the hand, wrist, and scaphoid. MATERIALS AND METHODS: At two hospitals (hospitals A and B), three datasets consisting of conventional hand, wrist, and scaphoid radiographs were retrospectively retrieved: a dataset of 1039 radiographs (775 patients [mean age, 48 years ± 23 {standard deviation}; 505 female patients], period: 2017-2019, hospitals A and B) for developing a scaphoid segmentation CNN, a dataset of 3000 radiographs (1846 patients [mean age, 42 years ± 22; 937 female patients], period: 2003-2019, hospital B) for developing a scaphoid fracture detection CNN, and a dataset of 190 radiographs (190 patients [mean age, 43 years ± 20; 77 female patients], period: 2011-2020, hospital A) for testing the complete fracture detection system. Both CNNs were applied consecutively: The segmentation CNN localized the scaphoid and then passed the relevant region to the detection CNN for fracture detection. In an observer study, the performance of the system was compared with that of 11 radiologists. Evaluation metrics included the Dice similarity coefficient (DSC), Hausdorff distance (HD), sensitivity, specificity, positive predictive value (PPV), and area under the receiver operating characteristic curve (AUC). RESULTS: The segmentation CNN achieved a DSC of 97.4% ± 1.4 with an HD of 1.31 mm ± 1.03. The detection CNN had sensitivity of 78% (95% CI: 70, 86), specificity of 84% (95% CI: 77, 92), PPV of 83% (95% CI: 77, 90), and AUC of 0.87 (95% CI: 0.81, 0.91). There was no difference between the AUC of the CNN and that of the radiologists (0.87 [95% CI: 0.81, 0.91] vs 0.83 [radiologist range: 0.79-0.85]; P = .09). CONCLUSION: The developed CNN achieved radiologist-level performance in detecting scaphoid bone fractures on conventional radiographs of the hand, wrist, and scaphoid.Keywords: Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms, Feature Detection-Vision-Application Domain, Computer-Aided DiagnosisSee also the commentary by Li and Torriani in this issue.Supplemental material is available for this article.©RSNA, 2021.

3.
PLoS One ; 16(7): e0255301, 2021.
Article in English | MEDLINE | ID: mdl-34329354

ABSTRACT

In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN is designed to be robust to missing input data. An ablation study extensively evaluates the performance benefits of the DFCN as well as its robustness to missing inputs. Data from 1088 patients with confirmed RT-PCR results are obtained from two independent medical facilities. The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model. Training and test datasets are taken from different medical facilities. Data is made publicly available. The performance of DFCN in predicting the RT-PCR result is compared with 3 related architectures as well as a Random Forest baseline. All models are trained with varying levels of masked input data to encourage robustness to missing inputs. Missing data is simulated at test time by masking inputs randomly. DFCN outperforms all other models with statistical significance using random subsets of input data with 2-27 available inputs. When all 28 inputs are available DFCN obtains an AUC of 0.924, higher than any other model. Furthermore, with clinically meaningful subsets of parameters consisting of just 6 and 7 inputs respectively, DFCN achieves higher AUCs than any other model, with values of 0.909 and 0.919.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Databases, Factual , Deep Learning , Models, Theoretical , SARS-CoV-2 , Humans , Random Allocation
4.
Radiology ; 296(3): E166-E172, 2020 09.
Article in English | MEDLINE | ID: mdl-32384019

ABSTRACT

Background Chest radiography may play an important role in triage for coronavirus disease 2019 (COVID-19), particularly in low-resource settings. Purpose To evaluate the performance of an artificial intelligence (AI) system for detection of COVID-19 pneumonia on chest radiographs. Materials and Methods An AI system (CAD4COVID-XRay) was trained on 24 678 chest radiographs, including 1540 used only for validation while training. The test set consisted of a set of continuously acquired chest radiographs (n = 454) obtained in patients suspected of having COVID-19 pneumonia between March 4 and April 6, 2020, at one center (223 patients with positive reverse transcription polymerase chain reaction [RT-PCR] results, 231 with negative RT-PCR results). Radiographs were independently analyzed by six readers and by the AI system. Diagnostic performance was analyzed with the receiver operating characteristic curve. Results For the test set, the mean age of patients was 67 years ± 14.4 (standard deviation) (56% male). With RT-PCR test results as the reference standard, the AI system correctly classified chest radiographs as COVID-19 pneumonia with an area under the receiver operating characteristic curve of 0.81. The system significantly outperformed each reader (P < .001 using the McNemar test) at their highest possible sensitivities. At their lowest sensitivities, only one reader significantly outperformed the AI system (P = .04). Conclusion The performance of an artificial intelligence system in the detection of coronavirus disease 2019 on chest radiographs was comparable with that of six independent readers. © RSNA, 2020.


Subject(s)
Artificial Intelligence , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Databases, Factual , Female , Humans , Male , Middle Aged , Pandemics , ROC Curve , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...