Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 269: 116197, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33316496

ABSTRACT

In order to meet the growing demand for adsorbents to treat wastewater effectively, there has been increased interest in using sustainable biomass feedstocks. In this present study, the dermal tissue of oil palm frond was pyrolyzed with superheated steam at 500 °C to produce nanoporous biochar as bioadsorbent. The effect of operating conditions was investigated to understand the adsorption mechanism and to enhance the adsorption of phenol and tannic acid. The biochar had a microporous structure with a Brunauer-Emmett-Teller surface area of 422 m2/g containing low polar groups. The adsorption capacity of 62.89 mg/g for phenol and 67.41 mg/g for tannic acid were obtained using 3 g/L biochar dosage after 8 h of treatment at solution pH of 6.5 and temperature of 45 °C. The Freundlich model had the best fit to the isotherm data of phenol (R2 of 0.9863), while the Langmuir model best elucidated the isotherm data of tannic acid (R2 of 0.9632). These indicated that the biochar-phenol interface was associated with a heterogeneous multilayer sorption mechanism, while the biochar-tannic acid interface had a nonspecific monolayer sorption mechanism. The residual concentration of 26.3 mg/L phenol and 23.1 mg/L tannic acid was achieved when treated from 260 mg/L three times consecutively with 1 g/L biochar dosage, compared to a reduction to 72.3 mg/L phenol and 69.9 mg/L tannic acid using 3 g/L biochar dosage in a single treatment. The biochar exhibited effective adsorption of phenol and tannic acid, making it possible to treat effluents that contain varieties of phenolic compounds.


Subject(s)
Pyrolysis , Water Pollutants, Chemical , Adsorption , Charcoal , Kinetics , Phenol/analysis , Phenols/analysis , Steam , Tannins , Water Pollutants, Chemical/analysis
2.
Waste Manag Res ; 37(5): 551-555, 2019 May.
Article in English | MEDLINE | ID: mdl-30727859

ABSTRACT

A one-step self-sustained carbonization of coconut shell biomass, carried out in a brick reactor at a relatively low temperature of 300-500°C, successfully produced a biochar-derived adsorbent with 308 m2/g surface area, 2 nm pore diameter, and 0.15 cm3/g total pore volume. The coconut shell biochar qualifies as a nano-adsorbent, supported by scanning electron microscope images, which showed well-developed nano-pores on the surface of the biochar structure, even though there was no separate activation process. This is the first report whereby coconut shell can be converted to biochar-derived nano-adsorbent at a low carbonization temperature, without the need of the activation process. This is superior to previous reports on biochar produced from oil palm empty fruit bunch.


Subject(s)
Charcoal , Cocos , Biomass , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...