Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 14(7): 794-800, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35449217

ABSTRACT

Polynitrogen molecules are attractive for high-energy-density materials due to energy stored in nitrogen-nitrogen bonds; however, it remains challenging to find energy-efficient synthetic routes and stabilization mechanisms for these compounds. Direct synthesis from molecular dinitrogen requires overcoming large activation barriers and the reaction products are prone to inherent inhomogeneity. Here we report the synthesis of planar N62- hexazine dianions, stabilized in K2N6, from potassium azide (KN3) on laser heating in a diamond anvil cell at pressures above 45 GPa. The resulting K2N6, which exhibits a metallic lustre, remains metastable down to 20 GPa. Synchrotron X-ray diffraction and Raman spectroscopy were used to identify this material, through good agreement with the theoretically predicted structural, vibrational and electronic properties for K2N6. The N62- rings characterized here are likely to be present in other high-energy-density materials stabilized by pressure. Under 30 GPa, an unusual N20.75--containing compound with the formula K3(N2)4 was formed instead.

2.
Sci Rep ; 10(1): 7816, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385337

ABSTRACT

The study of van der Waals interactions plays a central role in the understanding of bonding across a range of biological, chemical and physical phenomena. The presence of van der Waals interactions can be identified through analysis of the reduced density gradient, a fundamental parameter at the core of Density Functional Theory. An extension of Bader's Quantum Theory of Atoms in Molecules is developed here through combination with the analysis of the reduced density gradient. Through this development, a new quantum chemical topological tool is presented: the volumetric source function. This technique allows insight into the atomic composition of van der Waals interactions, offering the first route towards applying the highly successful source function to these disperse interactions. A new algorithm has been implemented in the open-source code, CRITIC2, and tested on acetone, adipic and maleic acids molecular crystals, each stabilized by van der Waals interactions. This novel technique for studying van der Waals interactions at an atomic level offers unprecedented opportunities in the fundamental study of intermolecular interactions and molecular design for crystal engineering, drug design and bio-macromolecular processes.

3.
J Phys Chem Lett ; 8(4): 755-764, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28103665

ABSTRACT

Nitrides, carbides, and borides of transition metals are an attractive class of hard materials. Our recent preliminary explorations of the binary chemical compounds indicated that chromium-based materials are among the hardest transition metal compounds. Motivated by this, here we explore in detail the binary Cr-B, Cr-C, and Cr-N systems using global optimization techniques. Calculated enthalpy of formation and hardness of predicted materials were used for Pareto optimization to define the hardest materials with the lowest energy. Our calculations recover all numerous known stable compounds (except Cr23C6 with its large unit cell) and discover a novel stable phase Pmn21-Cr2C. We resolve the structure of Cr2N and find it to be of anti-CaCl2 type (space group Pnnm). Many of these phases possess remarkable hardness, but only CrB4 is superhard (Vickers hardness 48 GPa). Among chromium compounds, borides generally possess the highest hardnesses and greatest stability. Under pressure, we predict stabilization of a layered TMDC-like phase of Cr2N, a WC-type phase of CrN, and a new compound CrN4. Nitrogen-rich chromium nitride CrN4 is a high-energy-density material featuring polymeric nitrogen chains. In the presence of metal atoms (e.g., Cr), polymerization of nitrogen takes place at much lower pressures; CrN4 becomes stable at ∼15 GPa (cf. 110 GPa for synthesis of pure polymeric nitrogen).

SELECTION OF CITATIONS
SEARCH DETAIL
...