Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Gene Ther ; 13(7): 791-802, 2002 May 01.
Article in English | MEDLINE | ID: mdl-11975846

ABSTRACT

Our primary objective was to fabricate a porous gene-supplemented collagen-glycosaminoglycan (GSCG) matrix for sustained delivery (over a period of several weeks) of plasmid DNA to articular chondrocytes when implanted into cartilage lesions. The specific aims of this in vitro study were to determine the release kinetics profiles of plasmid DNA from the GSCG matrices, and to determine the ability of the released plasmid DNA to transfect adult canine articular chondrocytes. In particular, we evaluated the effects of two variables, cross-linking treatment and the pH at which the DNA was incorporated into the matrices, on the amount of the plasmid DNA that remained bound to the GSCG matrices after passive (nonenzymatic) leaching and on the expression of a reporter gene in articular chondrocytes grown in the GSCG matrices. Collagen-glycosaminoglycan matrices were synthesized without cross-linking, and by three cross-linking treatments: dehydrothermal (DHT) treatment, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) treatment, and exposure to ultraviolet (UV) radiation. The plasmid DNA was incorporated into the collagen-glycosaminoglycan matrices in solutions at pH 2.5 or 7.5. Transmission electron microscopy studies revealed plasmid DNA bound to the walls of the porous GSCG matrices. In general, the GSCG matrices fabricated at pH 2.5 retained a larger fraction of the initial DNA load after 28 days of incubation in Tris-EDTA buffer. The passive, solvent-mediated release of the plasmid DNA from the GSCG matrices showed a biphasic pattern consisting of a faster, early release rate over the initial 8 hr of leaching followed by a slower, late release rate that was relatively constant over the subsequent 28 days of leaching. Electrophoretic analyses revealed that the plasmid DNA released from the GSCG matrices fabricated at pH 2.5 had been linearized and/or degraded; whereas the plasmid DNA leached from the GSCG matrices prepared with a DNA solution at pH 7.5 was primarily supercoiled and linear. Plasmid DNA released from all GSCG matrix formulations was able to generate luciferase reporter gene expression in monolayer-cultured chondrocytes transfected with the aid of a commercial lipid reagent, and in chondrocytes cultured in the GSCG matrices without the aid of a supplemental transfection reagent. Luciferase expression in chondrocyte-seeded GSCG constructs was evident throughout the culture period (28 days), with the EDC and UV cross-linked matrices prepared at pH 7.5 providing the highest transgene expression levels. We conclude that released plasmid DNA continually transfected canine articular chondrocytes seeded into GSCG matrices in vitro for a 4-week period as evidenced by luciferase reporter gene expression. Thus, GSCG matrices can be fabricated to provide sustained release of plasmid DNA carrying a potential therapeutic gene.


Subject(s)
Collagen/metabolism , Gene Transfer Techniques , Glycosaminoglycans/metabolism , Plasmids/metabolism , Animals , Cells, Cultured , Chondrocytes/metabolism , DNA/metabolism , Dogs , Electrophoresis, Agar Gel , Genetic Therapy/methods , Hydrogen-Ion Concentration , Kinetics , Luciferases/metabolism , Microscopy, Electron , Microscopy, Electron, Scanning , Protein Binding , Time Factors , Transfection , Ultraviolet Rays
2.
Proteins ; 42(1): 99-107, 2001 Jan 01.
Article in English | MEDLINE | ID: mdl-11093264

ABSTRACT

CC individuals, homozygous for the expression of beta(C)-globin, and SC individuals expressing both beta(S) and beta(C)-globins, are known to form intraerythrocytic oxy hemoglobin tetragonal crystals with pathophysiologies specific to the phenotype. To date, the question remains as to why HbC forms in vivo crystals in the oxy state and not in the deoxy state. Our first approach is to study HbC crystallization in vitro, under non-physiological conditions. We present here a comparison of deoxy and oxy HbC crystal formation induced under conditions of concentrated phosphate buffer (2g% Hb, 1. 8M potassium phosphate buffer) and viewed by differential interference contrast microscopy. Oxy HbC formed isotropic amorphous aggregates with subsequent tetragonal crystal formation. Also observed, but less numerous, were twisted, macro-ribbons that appeared to evolve into crystals. Deoxy HbC also formed aggregates and twisted macro-ribbon forms similar to those seen in the oxy liganded state. However, in contrast to oxy HbC, deoxy HbC favored the formation of a greater morphologic variety of aggregates including polymeric unbranched fibers in radial arrays with dense centers, with infrequent crystal formation in close spatial relation to both the radial arrays and macroribbons. Unlike the oxy (R-state) tetragonal crystal, deoxy HbC formed flat, hexagonal crystals. These results suggest: (1) the Lys substitution at beta6 evokes a crystallization process dependent upon ligand state conformation [i. e., the R (oxy) or T (deoxy) allosteric conformation]; and (2) the oxy ligand state is thermodynamically driven to a limited number of aggregation pathways with a high propensity to form the tetragonal crystal structure. This is in contrast to the deoxy form of HbC that energetically equally favors multiple pathways of aggregation, not all of which might culminate in crystal formation.


Subject(s)
Hemoglobin C/chemistry , Oxyhemoglobins/chemistry , Crystallization , Crystallography , Erythrocyte Aggregation/physiology , Hemoglobin C/metabolism , Hemoglobin C/ultrastructure , Humans , Ligands , Microscopy, Confocal , Microscopy, Interference , Microscopy, Video , Oxygen/metabolism , Oxygen/pharmacology , Oxyhemoglobins/metabolism , Oxyhemoglobins/ultrastructure , Thermodynamics
3.
Blood ; 82(11): 3474-81, 1993 Dec 01.
Article in English | MEDLINE | ID: mdl-8241514

ABSTRACT

The kinetics of hemoglobin S gelation are critical in sickle disease because microvascular obstruction can be avoided if red blood cells pass these vessels during the delay time, before polymerization and gelation occur in sufficient degree to rigidify the cells. Kinetics, including the delay time and the closely related exponential progress rate, are highly sensitive to hemoglobin concentration and degree of deoxygenation. Kinetics are also greatly accelerated by shear, an effect that may contribute to pathogenesis, since red blood cells deform and can undergo shear in vivo. Here we examine the joint dependence of kinetics on shear and hemoglobin concentration. As shear rate increases, the concentration dependence of the exponential progress rate decreases. The large decrease in concentration dependence supports the conclusion that acceleration of gelation by shear is due to breakage and not to enhancement of heterogeneous nucleation. Under shear, new fibers are created by breakage of existing ones, as well as by heterogeneous nucleation. At high shear, the rate of new fiber creation by breakage is very great and dominates that by heterogeneous nucleation. Therefore, if breakage depended only on shear rate and were independent of the concentration of hemoglobin in solution, the concentration dependence of kinetics should vanish. Although it decreases, it does not disappear. The concentration dependence that remains at high shear arises from (1) the direct contribution of fiber growth rate to the exponential progress rate, (2) the dependence of breakage rate on fiber growth rate, and (3) the dependence of solution viscosity on hemoglobin concentration.


Subject(s)
Hemoglobin, Sickle/chemistry , Dose-Response Relationship, Drug , Humans , Hydrogen-Ion Concentration , Kinetics , Polymers , Tensile Strength
4.
Nature ; 345(6278): 833-5, 1990 Jun 28.
Article in English | MEDLINE | ID: mdl-2359460

ABSTRACT

Deoxygenated sickle haemoglobin polymerizes into long 210-A diameter fibres that distort and decrease the deformability of red blood cells, and cause sickle cell disease. The fibres consist of seven intertwined double strands. They can form birefringent nematic liquid crystals (tactoids) and spherulites. Rheologically, the system behaves as a gel. The equilibria show a phase separation and a solubility. The reaction kinetics show a delay time, are then roughly exponential and are highly dependent on concentration and temperature, and accord with the double nucleation model. But these conclusions are derived from macroscopic data, without direct observation of individual fibres. We have now used non-invasive video-enhanced differential interference contrast (DIC) and dark-field microscopy to observe nucleation, growth and interaction of sickle deoxyhaemoglobin fibres in real time. The fibres originate both from centres that produce many radially distributed fibres and on the surface of pre-existing fibres, from which they then branch. The resulting network is cross-linked and dynamic in that it is flexible and continues to grow and cross-link. Our results support most aspects of the double nucleation model.


Subject(s)
Hemoglobin, Sickle , Gels , Humans , In Vitro Techniques , Polymers , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...