Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS Negl Trop Dis ; 14(12): e0008911, 2020 12.
Article in English | MEDLINE | ID: mdl-33382715

ABSTRACT

The lack of public awareness surrounding the dangers of snakebite envenomation (SBE) is one of the most critical factors contributing to SBE-induced complications, and subsequently exacerbating the number of deaths and disabilities resulting from SBE. In this study, we deployed a multifaceted community education programme to educate students, healthcare professionals and members of the public in rural areas of Tamil Nadu, India about the dangers of SBE, appropriate first aid measures and the 'do's and don'ts' following a snakebite. An assessment of prior knowledge within these communities identified several misconceptions concerning snakes and SBE. Using a combination of direct engagement (estimated to reach over 200,000 people), information leaflets (200,000 distributed), posters, video documentaries, media and social media (>2.8 million engagements), over the course of one year (January to December 2019) we reached over 3 million people in rural Tamil Nadu (around 8% of population). Evaluation of community-based assemblies indicated that at least 90% of attendees were able to recall the key messages at the end of the events, and at least 85% were able to recall the key messages even after 12 months. Due to high demand, a one-day symposium was organised to provide clinical knowledge and training on SBE to 250 healthcare professionals in rural Tamil Nadu. Notably, an assessment of patient data (291 victims) collected from a snakebite referral hospital over the same 12-month period (2019) indicated that arrival time at hospital following a snakebite was significantly faster and the effective first aid measures were administered to patients who were aware of our activities compared to those that were not. Overall, our approach provides a framework on how to educate rural communities about the dangers of SBE and thereby, mitigate delayed SBE treatment leading to an overall reduction in SBE-induced mortality, morbidity, treatment costs and other socio-economic ramifications.


Subject(s)
Health Education/organization & administration , Rural Population , Snake Bites/therapy , Snake Venoms/toxicity , Snakes/physiology , Animals , Antivenins/therapeutic use , First Aid , Humans , India/epidemiology , Snake Bites/epidemiology
3.
Int J Nanomedicine ; 7: 2943-56, 2012.
Article in English | MEDLINE | ID: mdl-22745555

ABSTRACT

Vascular endothelium is a potential target for therapeutic intervention in diverse pathological processes, including inflammation, atherosclerosis, and thrombosis. By virtue of their intravascular topography, endothelial cells are exposed to dynamically changing mechanical forces that are generated by blood flow. In the present study, we investigated the interactions of negatively charged 2.7 nm and 4.7 nm CdTe quantum dots and 50 nm silica particles with cultured endothelial cells under regulated shear stress (SS) conditions. Cultured cells within the engineered microfluidic channels were exposed to nanoparticles under static condition or under low, medium, and high SS rates (0.05, 0.1, and 0.5 Pa, respectively). Vascular inflammation and associated endothelial damage were simulated by treatment with tumor necrosis factor-α (TNF-α) or by compromising the cell membrane with the use of low Triton X-100 concentration. Our results demonstrate that SS is critical for nanoparticle uptake by endothelial cells. Maximal uptake was registered at the SS rate of 0.05 Pa. By contrast, endothelial exposure to mild detergents or TNF-α treatment had no significant effect on nanoparticle uptake. Atomic force microscopy demonstrated the increased formation of actin-based cytoskeletal structures, including stress fibers and membrane ruffles, which have been associated with nanoparticle endocytosis. In conclusion, the combinatorial effects of SS rates, vascular endothelial conditions, and nanoparticle physical and chemical properties must be taken into account for the successful design of nanoparticle-drug conjugates intended for parenteral delivery.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Nanoparticles/chemistry , Quantum Dots , Actin Cytoskeleton/metabolism , Cadmium Compounds/chemistry , Cadmium Compounds/pharmacokinetics , Cell Growth Processes/physiology , Cell Membrane/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Microfluidics , Microscopy, Atomic Force , Models, Biological , Octoxynol , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacokinetics , Stress, Mechanical , Tellurium/chemistry , Tellurium/pharmacokinetics , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...