Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1216327, 2023.
Article in English | MEDLINE | ID: mdl-37457984

ABSTRACT

While ample research on independent associations between infant cognition and gut microbiota composition and human milk (HM) oligosaccharides (HMOs) has been reported, studies on how the interactions between gut microbiota and HMOs may yield associations with cognitive development in infancy are lacking. We aimed to determine how HMOs and species of Bacteroides and Bifidobacterium genera interact with each other and their associations with cognitive development in typically developing infants. A total of 105 mother-infant dyads were included in this study. The enrolled infants [2.9-12 months old (8.09 ± 2.48)] were at least predominantly breastfed at 4 months old. A total of 170 HM samples from the mothers and fecal samples of the children were collected longitudinally. Using the Mullen Scales of Early Learning to assess cognition and the scores as the outcomes, linear mixed effects models including both the levels of eight HMOs and relative abundance of Bacteroides and Bifidobacterium species as main associations and their interactions were employed with adjusting covariates; infant sex, delivery mode, maternal education, site, and batch effects of HMOs. Additionally, regression models stratifying infants based on the A-tetrasaccharide (A-tetra) status of the HM they received were also employed to determine if the associations depend on the A-tetra status. With Bacteroides species, we observed significant associations with motor functions, while Bif. catenulatum showed a negative association with visual reception in the detectable A-tetra group both as main effect (value of p = 0.012) and in interaction with LNFP-I (value of p = 0.007). Additionally, 3-FL showed a positive association with gross motor (p = 0.027) and visual reception (p = 0.041). Furthermore, significant associations were observed with the interaction terms mainly in the undetectable A-tetra group. Specifically, we observed negative associations for Bifidobacterium species and LNT [breve (p = 0.011) and longum (p = 0.022)], and positive associations for expressive language with 3'-SL and Bif. bifidum (p = 0.01), 6'-SL and B. fragilis (p = 0.019), and LNFP-I and Bif. kashiwanohense (p = 0.048), respectively. Our findings suggest that gut microbiota and HMOs are both independently and interactively associated with early cognitive development. In particular, the diverse interactions between HMOs and Bacteroides and Bifidobacterium species reveal different candidate pathways through which HMOs, Bifidobacterium and Bacteroides species potentially interact to impact cognitive development in infancy.

2.
Nutrients ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432405

ABSTRACT

Subclinical mastitis (SCM) is an inflammatory state of the lactating mammary gland, which is asymptomatic and may have negative consequences for child growth. The objectives of this study were to: (1) test the association between the dietary inflammatory index (DII®) and SCM and (2) assess the differences in nutrient intakes between women without SCM and those with SCM. One hundred and seventy-seven women with available data on human milk (HM) sodium potassium ratio (Na:K) and dietary intake data were included for analysis. Multivariable logistic regression was used to examine the association between nutrient intake and the DII score in relation to SCM. Women without SCM had a lower median DII score (0.60) than women with moderate (1.12) or severe (1.74) SCM (p < 0.01). A one-unit increase in DII was associated with about 41% increased odds of having SCM, adjusting for country and mode of delivery, p = 0.001. Women with SCM had lower mean intakes of several anti-inflammatory nutrients. We show for the first time exploratory evidence that SCM may be associated with a pro-inflammatory diet and women with SCM have lower intakes of several antioxidant and anti-inflammatory nutrients.


Subject(s)
Lactation , Mastitis , Female , Humans , Diet , Mastitis/complications , Milk, Human/chemistry , Sodium/analysis
3.
Sci Rep ; 12(1): 17304, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36243744

ABSTRACT

Human milk oligosaccharides play a key role in the maturation of the infant gut microbiome and immune system and are hypothesized to affect growth. This study examined the temporal changes of 24 HMOs and their associations to infant growth and appetitive traits in an exploratory, prospective, observational, study of 41 Filipino mother-infant dyads. Exclusively breastfed, healthy, term infants were enrolled at 21-26 days of age (≈ 0.75 mo) and followed for 6 months. Infant growth measures and appetitive traits were collected at visit 1 (V1) (≈ 0.75 mo), V2 (≈ 1.5 mo), V3 (2.5 mo), V4 (2.75 mo), V5 (4 mo), and V6 (6 mo), while HMOs were measured at V1, V2, V3 and V5. Overall exposure to each HMO was summarized as area under the curve from baseline to 4 months of age and examined in association with each measure of growth at 6 months using linear regression adjusted for maternal age at birth, infant sex, birth weight, and mode of delivery. We saw modest associations between several HMOs and infant growth parameters. Our results suggest that specific HMOs, partly as proxy for milk groups (defined by Secretor and Lewis status), may be associated with head circumference and length, increasing their relevance especially in populations at the lower end of the WHO growth curve. We did not identify the same HMOs associated with infant appetitive traits, indicating that at least in our cohort, changes in appetite were not driving the observed associations between HMOs and growth.Clinical trial registration: NCT03387124.


Subject(s)
Breast Feeding , Milk, Human , Female , Humans , Infant , Infant, Newborn , Lactation , Oligosaccharides , Prospective Studies
4.
Front Nutr ; 9: 919769, 2022.
Article in English | MEDLINE | ID: mdl-36091236

ABSTRACT

Early dietary exposure via human milk nutrients offers a window of opportunity to support cognitive and temperament development. While several studies have focused on associations of few pre-selected human milk nutrients with cognition and temperament, it is highly plausible that human milk nutrients synergistically and jointly support cognitive and behavioral development in early life. We aimed to discern the combined associations of three major classes of human milk nutrients with cognition and temperament during the first 6 months of life when human milk is the primary source of an infant's nutrition and explore whether there were persistent effects up to 18 months old. The Mullen Scales of Early Learning and Infant Behavior Questionnaires-Revised were used to assess cognition and temperament, respectively, of 54 exclusively/predominantly breastfed infants in the first 6 months of life, whose follow-ups were conducted at 6-9, 9-12, and 12-18 months old. Human milk samples were obtained from the mothers of the participants at less than 6 months of age and analyzed for fatty acids [total monounsaturated fatty acids, polyunsaturated fatty acid, total saturated fatty acid (TSFA), arachidonic acid (ARA), docosahexaenoic acid (DHA), ARA/DHA, omega-6/omega-3 polyunsaturated fatty acids ratio (n-6/n-3)], phospholipids [phosphatidylcholine, phosphatidylethanolamine (PE), phosphatidylinositol (PI), sphingomyelin], and choline [free choline, phosphocholine (PCho), glycerophosphocholine]. Feature selection was performed to select nutrients associated with cognition and temperament. The combined effects of selected nutrients were analyzed using multiple regression. A positive association between the arachidonic acid (ARA) and surgency was observed (p = 0.024). A significant effect of DHA, n-6/n-3, PE, and TSFA concentrations on receptive language (R 2 = 0.39, p = 0.025) and the elevated ARA, PCho, and PI with increased surgency (R 2 = 0.43, p = 0.003) was identified, suggesting that DHA and ARA may have distinct roles for temperament and language functions. Furthermore, the exploratory association analyses suggest that the effects of human milk nutrients on R.L. and surgency may persist beyond the first 6 months of life, particularly surgency at 12-18 months (p = 0.002). Our study highlighted that various human milk nutrients work together to support the development of cognition and temperament traits during early infancy.

5.
Front Nutr ; 9: 834394, 2022.
Article in English | MEDLINE | ID: mdl-35464009

ABSTRACT

Background: The effect of the mode of neonatal delivery (cesarean or vaginal) on the nutrient composition of human milk (HM) has rarely been studied. Given the increasing prevalence of cesarean section (C-section) globally, understanding the impact of C-section vs. vaginal delivery on the nutrient composition of HM is fundamental when HM is the preferred source of infant food during the first 4 postnatal months. Objective: This study aimed to evaluate the association between mode of delivery and nutrient composition of HM in the first 4 months of life. Design: Milk samples were obtained from 317 healthy lactating mothers as part of an exploratory analyses within a multicenter European longitudinal cohort (ATLAS cohort) to study the HM composition, and its potential association with the mode of delivery. We employed traditional mixed models to study individual nutrient associations adjusted for mother's country, infant birth weight, parity, and gestational age, and complemented it, for the first time, with a multidimensional data analyses approach (non-negative tensor factorization, NTF) to examine holistically how patterns of multiple nutrients and changes over time are associated with the delivery mode. Results: Over the first 4 months, nutrient profiles in the milk of mothers who delivered vaginally (n = 237) showed significantly higher levels of palmitoleic acid (16:1n-7), stearic acid (18:0), oleic acid (18:1n-9), arachidic acid (20:0), alpha-linolenic acid (18:3n-3), eicosapentaenoic acid (20:5n-3), docosahexenoic acid (22:6n-3), erucic acid (22:1n-9), monounsaturated fatty acids (MUFA)%, calcium, and phosphorus, whereas the ratios of arachidonic acid/docosahexaenoic acid (ARA/DHA) and n-6/n-3, as well as polyunsaturated fatty acids (PUFA)% were higher in milk from women who had C-sections, in the unadjusted analyses (p < 0.05 for all), but did not retain significance when adjusted for confounders in the mixed models. Using a complementary multidimension data analyses approach (NTF), we show few similar patterns wherein a group of mothers with a high density of C-sections showed increased values for PUFA%, n-6/n-3, and ARA/DHA ratios, but decreased values of MUFA%, 20:1n-9, iodine, and fucosyl-sialyl-lacto-N-tetraose 2 during the first 4 months of lactation. Conclusion: Our data provide preliminary insights on differences in concentrations of several HM nutrients (predominantly fatty acids) among women who delivered via C-section. Although these effects tend to disappear after adjustment for confounders, given the similar patterns observed using two different data analytical approaches, these preliminary findings warrant further confirmation and additional insight on the biological and clinical effects related to such differences early in life.

6.
Nutrients ; 11(8)2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31390765

ABSTRACT

Preterm birth (PTB) (<37 weeks of gestation) is the leading cause of newborn death and a risk factor for short and long-term adverse health outcomes. Most cases are of unknown cause. Although the mechanisms triggering PTB remain unclear, an inappropriate increase in net inflammatory load seems to be key. To date, interventions that reduce the risk of PTB are effective only in specific groups of women, probably due to the heterogeneity of its etiopathogenesis. Use of progesterone is the most effective, but only in singleton pregnancies with history of PTB. Thus, primary prevention is greatly needed and nutritional and bioactive solutions are a promising alternative. Among these, docosahexaenoic acid (DHA) is the most promising to reduce the risk for early PTB. Other potential nutrient interventions include the administration of zinc (possibly limited to populations with low nutritional status or poor zinc status) and vitamin D; additional preliminary evidence exists for vitamin A, calcium, iron, folic acid, combined iron-folate, magnesium, multiple micronutrients, and probiotics. Considering the public health relevance of PTB, promising interventions should be studied in large and well-designed clinical trials. The objective of this review is to describe, summarize, and discuss the existing evidence on nutritional and bioactive solutions for reducing the risk of PTB.


Subject(s)
Maternal Nutritional Physiological Phenomena , Nutritional Status , Premature Birth , Female , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...