Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol Paris ; 101(1-3): 1-8, 2007.
Article in English | MEDLINE | ID: mdl-18068610

ABSTRACT

This special issue of the Journal of Physiology, Paris, is an outcome of NeuroComp'06, the first French conference in Computational Neuroscience. The preparation for this conference, held at Pont-à-Mousson in October 2006, was accompanied by a survey which has resulted in an up-to-date inventory of human resources and labs in France concerned with this emerging new field of research (see team directory in http://neurocomp.risc.cnrs.fr/). This thematic JPP issue gathers some of the key scientific presentations made on the occasion of this first interdisciplinary meeting, which should soon become recognized as a yearly national conference representative of a new scientific community. The present introductory paper presents the general scientific context of the conference and reviews some of the historical and conceptual foundations of Systems and Computational Neuroscience in France.


Subject(s)
Computer Systems/trends , Neurosciences/trends , Animals , Brain/physiology , Computational Biology/trends , Computer Simulation , France , Humans
2.
IEEE Trans Neural Netw ; 15(5): 1164-75, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15484892

ABSTRACT

To understand possible strategies of temporal spike coding in the central nervous system, we study functional neuromimetic models of visual processing for static images. We will first present the retinal model which was introduced by Van Rullen and Thorpe and which represents the multiscale contrast values of the image using an orthonormal wavelet transform. These analog values activate a set of spiking neurons which each fire once to produce an asynchronous wave of spikes. According to this model, the image may be progressively reconstructed from this spike wave thanks to regularities in the statistics of the coefficients determined with natural images. Here, we study mathematically how the quality of information transmission carried by this temporal representation varies over time. In particular, we study how these regularities can be used to optimize information transmission by using a form of temporal cooperation of neurons to code analog values. The original model used wavelet transforms that are close to orthogonal. However, the selectivity of realistic neurons overlap, and we propose an extension of the previous model by adding a spatial cooperation between filters. This model extends the previous scheme for arbitrary--and possibly nonorthogonal--representations of features in the images. In particular, we compared the performance of increasingly over-complete representations in the retina. Results show that this algorithm provides an efficient spike coding strategy for low-level visual processing which may adapt to the complexity of the visual input.


Subject(s)
Models, Neurological , Neurons/physiology , Synaptic Transmission/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Visual Perception/physiology , Action Potentials/physiology , Algorithms , Animals , Contrast Sensitivity/physiology , Humans , Reaction Time/physiology , Retina/physiology , Time Factors , Time Perception/physiology , Vision, Ocular/physiology
3.
Neural Netw ; 11(3): 521-533, 1998 Apr.
Article in English | MEDLINE | ID: mdl-12662827

ABSTRACT

Freeman's investigations on the olfactory bulb of the rabbit showed that its signal dynamics was chaotic, and that recognition of a learned stimulus is linked to a dimension reduction of the dynamics attractor. In this paper we address the question whether this behavior is specific of this particular architecture, or if it is a general property. We study the dynamics of a non-convergent recurrent model-the random recurrent neural networks. In that model a mean-field theory can be used to analyze the autonomous dynamics. We extend this approach with various observations on significant changes in the dynamical regime when sending static random stimuli. Then we propose a Hebb-like learning rule, viewed as a self-organization dynamical process inducing specific reactivity to one random stimulus. We numerically show the dynamics reduction during learning and recognition processes and analyze it in terms of dynamical repartition of local neural activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...