Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Nano Lett ; 18(7): 4431-4439, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29923725

ABSTRACT

We report the development of nanowire field-effect transistors featuring an ultrathin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally coated nanowires, which we used to produce functional Ω-gate and gate-all-around structures. These give subthreshold swings as low as 140 mV/dec and on/off ratios exceeding 103 at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically treated nanowire surfaces, a feature generally not possible with oxides produced by atomic layer deposition due to the surface "self-cleaning" effect. Our results highlight the potential for parylene as an alternative ultrathin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylene's well-established biocompatible properties.

2.
Nano Lett ; 18(2): 1088-1092, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29290120

ABSTRACT

Semiconductor nanowires could significantly boost the functionality and performance of future electronics, light-emitting diodes, and solar cells. However, realizing this potential requires growth methods that enable high-throughput and low-cost production of nanowires with controlled doping. Aerotaxy is an aerosol-based method with extremely high growth rate that does not require a growth substrate, allowing mass-production of high-quality nanowires at a low cost. So far, pn-junctions, a crucial element of solar cells and light-emitting diodes, have not been realized by Aerotaxy growth. Here we report a further development of the Aerotaxy method and demonstrate the growth of GaAs nanowire pn-junctions. Our Aerotaxy system uses an aerosol generator for producing the catalytic seed particles, together with a growth reactor with multiple consecutive chambers for growth of material with different dopants. We show that the produced nanowire pn-junctions have excellent diode characteristics with a rectification ratio of >105, an ideality factor around 2, and very promising photoresponse. Using electron beam induced current and hyperspectral cathodoluminescence, we determined the location of the pn-junction and show that the grown nanowires have high doping levels, as well as electrical properties and diffusion lengths comparable to nanowires grown using metal organic vapor phase epitaxy. Our findings demonstrate that high-quality GaAs nanowire pn-junctions can be produced using a low-cost technique suitable for mass-production, paving the way for industrial-scale production of nanowire-based solar cells.

3.
Nat Commun ; 8(1): 1634, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29158511

ABSTRACT

It has recently been found that anti-Stokes photoluminescence can be observed in degenerately n-doped indium phosphide nanowires, when exciting directly into the electron gas. This anti-Stokes mechanism has not been observed before and allows the study of carrier relaxation and recombination using standard photoluminescence techniques. It is important to know if this anti-Stokes photoluminescence also occurs in bulk semiconductors as well as its relation to carrier recombination and relaxation. Here we show that similar anti-Stokes photoluminescence can indeed be observed in degenerately doped bulk indium phosphide and gallium arsenide and is caused by minority carriers scattering to high momenta by phonons. We find in addition that the radiative electron-hole recombination is highly momentum-conserving and that photogenerated minority carriers recombine before relaxing to the band edge at low temperatures. These observations challenge the use of models assuming thermalization of minority carriers in the analysis of highly doped devices.

4.
Nanotechnology ; 27(6): 065706, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26762762

ABSTRACT

In order to push the development of nanowire-based solar cells further using optimized nanowire diameter and pitch, a doping evaluation of the nanowire geometry is necessary. We report on a doping evaluation of n-type InP nanowires with diameters optimized for light absorption, grown by the use of metal-organic vapor phase epitaxy in particle-assisted growth mode using tetraethyltin (TESn) as the dopant precursor. The charge carrier concentration was evaluated using four-probe resistivity measurements and spatially resolved Hall measurements. In order to reach the highest possible nanowire doping level, we set the TESn molar fraction at a high constant value throughout growth and varied the trimethylindium (TMIn) molar fraction for different runs. Analysis shows that the charge carrier concentration in nanowires grown with the highest TMIn molar fraction (not leading to kinking nanowires) results in a low carrier concentration of approximately 10(16) cm(-3). By decreasing the molar fraction of TMIn, effectively increasing the IV/III ratio, the carrier concentration increases up to a level of about 10(19) cm(-3), where it seems to saturate. Axial carrier concentration gradients along the nanowires are found, which can be correlated to a combination of changes in the nanowire growth rate, measured in situ by optical reflectometry, and polytypism of the nanowires observed in transmission electron microscopy.

5.
Nano Lett ; 15(5): 2836-43, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25879492

ABSTRACT

We report a method for making horizontal wrap-gate nanowire transistors with up to four independently controllable wrap-gated segments. While the step up to two independent wrap-gates requires a major change in fabrication methodology, a key advantage to this new approach, and the horizontal orientation more generally, is that achieving more than two wrap-gate segments then requires no extra fabrication steps. This is in contrast to the vertical orientation, where a significant subset of the fabrication steps needs to be repeated for each additional gate. We show that cross-talk between adjacent wrap-gate segments is negligible despite separations less than 200 nm. We also demonstrate the ability to make multiple wrap-gate transistors on a single nanowire using the exact same process. The excellent scalability potential of horizontal wrap-gate nanowire transistors makes them highly favorable for the development of advanced nanowire devices and possible integration with vertical wrap-gate nanowire transistors in 3D nanowire network architectures.

6.
Nanotechnology ; 25(46): 465306, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25360747

ABSTRACT

We present a method to fabricate nanometer scale gaps within InAs nanowires by selectively etching InAs/InP heterostructure nanowires. We used vapor-liquid-solid grown InAs nanowires with embedded InP segments of 10-60 nm length and developed an etching recipe to selectively remove the InP segment. A photo-assisted wet etching process in a mixture of acetic acid and hydrobromic acid gave high selectivity, with accurate removal of InP segments down to 20 nm, leaving the InAs wire largely unattacked, as verified using scanning electron and transmission electron microscopy. The obtained nanogaps in InAs wires have potential as semiconducting electrodes to investigate electronic transport in nanoscale objects. We demonstrate this functionality by dielectrophoretically trapping 30 nm diameter gold nanoparticles into the gap.

7.
Nanotechnology ; 24(34): 345601, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23900037

ABSTRACT

Nanowire heterostructures are of special interest for band structure engineering due to an expanded range of defect-free material combinations. However, the higher degree of freedom in nanowire heterostructure growth comes at the expense of challenges related to nanowire-seed particle interactions, such as undesired composition, grading and kink formation. To better understand the mechanisms of kink formation in nanowires, we here present a detailed study of the dependence of heterostructure nanowire morphology on indium pressure, nanowire diameter, and nanowire density. We investigate InAs-InP-InAs heterostructure nanowires grown with chemical beam epitaxy, which is a material system that allows for very abrupt heterointerfaces. Our observations indicate that the critical parameter for kink formation is the availability of indium, and that the resulting morphology is also highly dependent on the length of the InP segment. It is shown that kinking is associated with the formation of an inclined facet at the interface between InP and InAs, which destabilizes the growth and leads to a change in growth direction. By careful tuning of the growth parameters, it is possible to entirely suppress the formation of this inclined facet and thereby kinking at the heterointerface. Our results also indicate the possibility of producing controllably kinked nanowires with a high yield.

8.
Nanotechnology ; 23(24): 245601, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22641029

ABSTRACT

Non-tapered vertically straight Ga(x)In(1-x)P nanowires were grown in a compositional range from Ga(0.2)In(0.8)P to pure GaP in particle-assisted mode by controlling the trimethylindium, trimethylgallium and hydrogen chloride flows in metal-organic vapor phase epitaxy. X-ray energy dispersive spectroscopy in transmission electron microscopy revealed homogeneous radial material composition in single nanowires, whereas variations in the material composition were found along the nanowires. High-resolution x-ray diffraction indicates a variation of the material composition on the order of about 19% measuring an entire sample area, i.e., including edge effects during growth. The non-capped nanowires emit room temperature photoluminescence strongly in the energy range of 1.43-2.16 eV, correlated with the bandgap expected from the material composition.

9.
Phys Rev Lett ; 104(18): 186804, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20482198

ABSTRACT

The large, level-dependent g factors in an InSb nanowire quantum dot allow for the occurrence of a variety of level crossings in the dot. While we observe the standard conductance enhancement in the Coulomb blockade region for aligned levels with different spins due to the Kondo effect, a vanishing of the conductance is found at the alignment of levels with equal spins. This conductance suppression appears as a canyon cutting through the web of direct tunneling lines and an enclosed Coulomb blockade region. In the center of the Coulomb blockade region, we observe the predicted correlation-induced resonance. Our findings are supported by numerical and analytical calculations.

10.
Phys Rev Lett ; 104(3): 036801, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20366667

ABSTRACT

Strong radial confinement in semiconductor nanowires leads to modified electronic and phononic energy spectra. We analyze the current response to the interplay between quantum confinement effects of the electron and phonon systems in a gate-defined double quantum dot in a semiconductor nanowire. We show that current spectroscopy of inelastic transitions between the two quantum dots can be used as an experimental probe of the confined phonon environment. The resulting discrete peak structure in the measurements is explained by theoretical modeling of the confined phonon mode spectrum, where the piezoelectric coupling is of crucial importance.

11.
Nanotechnology ; 21(20): 205703, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20413840

ABSTRACT

The electrical and structural properties of 111B-oriented InAs nanowires grown using metal-organic precursors have been studied. On the basis of electrical measurements it was found that the trends in carbon incorporation are similar to those observed in the layer growth, where an increased As/In precursor ratio and growth temperature result in a decrease in carbon-related impurities. Our results also show that the effect of non-intentional carbon doping is weaker in InAs nanowires compared to bulk, which may be explained by lower carbon incorporation in the nanowire core. We determine that differences in crystal quality, here quantified as the stacking fault density, are not the primary cause for variations in resistivity of the material studied. The effects of some n-dopant precursors (S, Se, Si, Sn) on InAs nanowire morphology, crystal structure and resistivity were also investigated. All precursors result in n-doped nanowires, but high precursor flows of Si and Sn also lead to enhanced radial overgrowth. Use of the Se precursor increases the stacking fault density in wurtzite nanowires, ultimately at high flows leading to a zinc blende crystal structure with strong overgrowth and very low resistivity.


Subject(s)
Arsenicals/chemistry , Chemistry, Organic/methods , Indium/chemistry , Nanotechnology/methods , Nanowires/chemistry , Organic Chemicals/chemistry , Carbon/chemistry , Crystallization , Electrochemistry/methods , Materials Testing , Metal Nanoparticles/chemistry , Metals/chemistry , Temperature
12.
Nanotechnology ; 21(10): 105711, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20157234

ABSTRACT

We have employed time-resolved photoluminescence (PL) spectroscopy to study the impact of HfO(2) surface capping by atomic layer deposition (ALD) on the optical properties of InP nanowires (NWs). The deposition of high-kappa dielectrics acting as a gate oxide is of particular interest in view of possible applications of semiconductor NWs in future wrap-gated field effect transistors (FETs). A high number of charged states at the NW-dielectrics interface can strongly degrade the performance of the FET which explains the strong interest in high quality deposition of high-kappa dielectrics. In the present work we show that time-resolved spectroscopy is a valuable and direct tool to monitor the surface quality of HfO(2)-capped InP NWs. In particular, we have studied the impact of ALD process parameters as well as surface treatment prior to the oxide capping on the NW-dielectrics interface quality. The best results in terms of the surface recombination velocity (S(0) = 9.5 x 10(3) cm s(-1)) were obtained for InP/GaP core/shell NWs in combination with a low temperature (100 degrees C) ALD process. While the present report focuses on the InP material system, our method of addressing the surface treatment for semiconductors with high-kappa dielectrics will also be applicable to nanoelectronic devices based on other III/V material systems such as InAs.

13.
Nanotechnology ; 20(22): 225304, 2009 Jun 03.
Article in English | MEDLINE | ID: mdl-19433868

ABSTRACT

Nanowires are important candidates for use in future electronics, photonics and thermoelectrics applications. We focus here in particular on nanowires for use in thermoelectric power generation and present a method of fabricating dense uniform InAs nanowire arrays amenable to future incorporation of advanced heterostructures that could further increase the thermoelectric performance of these nanowires. In these applications it will be important to have the nanowires densely packed in order to give an appreciable amount of power output. Here we present the fabrication of such dense arrays, using metal-particle seeded growth and chemical beam epitaxy, where the metal particles are defined by electron beam lithography, metal evaporation and lift-off. We evaluate the potential of chemical beam epitaxy for the growth of dense, freestanding InAs nanowire arrays and describe the process that enabled us to achieve areal packing densities of up to 19% with a variation of only a few per cent in nanowire diameter and height. We close by discussing how even higher areal packing densities can be achieved.

14.
Nat Nanotechnol ; 4(1): 50-5, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19119283

ABSTRACT

Semiconductor nanowires show promise for use in nanoelectronics, fundamental electron transport studies, quantum optics and biological sensing. Such applications require a high degree of nanowire growth control, right down to the atomic level. However, many binary semiconductor nanowires exhibit a high density of randomly distributed twin defects and stacking faults, which results in an uncontrolled, or polytypic, crystal structure. Here, we demonstrate full control of the crystal structure of InAs nanowires by varying nanowire diameter and growth temperature. By selectively tuning the crystal structure, we fabricate highly reproducible polytypic and twin-plane superlattices within single nanowires. In addition to reducing defect densities, this level of control could lead to bandgap engineering and novel electronic behaviour.

15.
Phys Rev Lett ; 101(18): 186802, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18999847

ABSTRACT

We investigate tunable hole quantum dots defined by surface gating Ge/Si core-shell nanowire heterostructures. In single level Coulomb-blockade transport measurements at low temperatures spin doublets are found, which become sequentially filled by holes. Magnetotransport measurements allow us to extract a g factor g approximately 2 close to the value of a free spin-1/2 particle in the case of the smallest dot. In less confined quantum dots smaller g factor values are observed. This indicates a lifting of the expected strong spin-orbit interaction effects in the valence band for holes confined in small enough quantum dots. By comparing the excitation spectrum with the addition spectrum we tentatively identify a hole exchange interaction strength chi approximately 130 microeV.

16.
Nano Lett ; 8(3): 848-52, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18254603

ABSTRACT

We observe spin-valve-like effects in nanoscaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer.

17.
Nanotechnology ; 19(43): 435201, 2008 Oct 29.
Article in English | MEDLINE | ID: mdl-21832684

ABSTRACT

The capacitance of arrays of vertical wrapped-gate InAs nanowires is analysed. With the help of a Poisson-Schrödinger solver, information about the doping density can be obtained directly. Further features in the measured capacitance-voltage characteristics can be attributed to the presence of surface states as well as the coexistence of electrons and holes in the wire. For both scenarios, quantitative estimates are provided. It is furthermore shown that the difference between the actual capacitance and the geometrical limit is quite large, and depends strongly on the nanowire material.

18.
Nanotechnology ; 19(44): 445602, 2008 Nov 05.
Article in English | MEDLINE | ID: mdl-21832734

ABSTRACT

The use of tetraethyltin (TESn) and dimethylzinc (DMZn) as in situ n- and p-dopant precursors during particle-assisted growth of InP nanowires is reported. Gate voltage dependent transport measurements demonstrate that the nanowires can be predictably synthesized as either n- or p-type. These doped nanowires can be characterized based on their electric field response and we find that n-type doping scales over a range from 10(17) to 10(19) cm(-3) with increasing input TESn dopant molar fraction. On the other hand, the p-type doping using DMZn saturates at low levels, probably related to a strong increase in nanowire growth rate with increasing DMZn molar fractions. By optimizing growth conditions with respect to tapering, axial pn-junctions exhibiting rectifying behavior were fabricated. The pn-junctions can be operated as light emitting diodes.

19.
Phys Rev Lett ; 98(26): 266801, 2007 Jun 29.
Article in English | MEDLINE | ID: mdl-17678116

ABSTRACT

We demonstrate control of the electron number down to the last electron in tunable few-electron quantum dots defined in catalytically grown InAs nanowires. Using low temperature transport spectroscopy in the Coulomb blockade regime, we propose a method to directly determine the magnitude of the spin-orbit interaction in a two-electron artificial atom with strong spin-orbit coupling. Because of a large effective g factor |g(*)|=8+/-1, the transition from a singlet S to a triplet T+ ground state with increasing magnetic field is dominated by the Zeeman energy rather than by orbital effects. We find that the spin-orbit coupling mixes the T+ and S states and thus induces an avoided crossing with magnitude Delta(SO)=0.25+/-0.05 meV. This allows us to calculate the spin-orbit length lambda(SO) approximately 127 nm in such systems using a simple model.

20.
Nano Lett ; 7(1): 81-5, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17212444

ABSTRACT

We have investigated spin accumulation in Ni/Au/Ni single-electron transistors assembled by atomic force microscopy. The fabrication technique is unique in that unconventional hybrid devices can be realized with unprecedented control, including real-time tunable tunnel resistances. A grid of Au disks, 30 nm in diameter and 30 nm thick, is prepared on a SiO2 surface by conventional e-beam writing. Subsequently, 30 nm thick ferromagnetic Ni source, drain, and side-gate electrodes are formed in similar process steps. The width and length of the source and drain electrodes were different to exhibit different coercive switching fields. Tunnel barriers of NiO are realized by sequential Ar and O2 plasma treatment. By use of an atomic force microscope with specially designed software, a single nonmagnetic Au nanodisk is positioned into the 25 nm gap between the source and drain electrodes. The resistance of the device is monitored in real time while the Au disk is manipulated step-by-step with angstrom-level precision. Transport measurements in magnetic field at 1.7 K reveal no clear spin accumulation in the device, which can be attributed to fast spin relaxation in the Au disk. From numerical simulations using the rate-equation approach of orthodox Coulomb blockade theory, we can put an upper bound of a few nanoseconds on the spin-relaxation time for electrons in the Au disk. To confirm the magnetic switching characteristics and spin injection efficiency of the Ni electrodes, we fabricated a test structure consisting of a Ni/NiO/Ni magnetic tunnel junction with asymmetric dimensions of the electrodes similar to those of the single-electron transistors. Magnetoresistance measurements on the test device exhibited clear signs of magnetic reversal and a maximum tunneling magnetoresistance of 10%, from which we deduced a spin polarization of about 22% in the Ni electrodes.


Subject(s)
Electrodes , Gold/chemistry , Nickel/chemistry , Spin Labels , Electrons , Microscopy, Atomic Force , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...