Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 25(2): 229-233, 2019 02.
Article in English | MEDLINE | ID: mdl-30664785

ABSTRACT

Leber congenital amaurosis type 10 is a severe retinal dystrophy caused by mutations in the CEP290 gene1,2. We developed EDIT-101, a candidate genome-editing therapeutic, to remove the aberrant splice donor created by the IVS26 mutation in the CEP290 gene and restore normal CEP290 expression. Key to this therapeutic, we identified a pair of Staphylococcus aureus Cas9 guide RNAs that were highly active and specific to the human CEP290 target sequence. In vitro experiments in human cells and retinal explants demonstrated the molecular mechanism of action and nuclease specificity. Subretinal delivery of EDIT-101 in humanized CEP290 mice showed rapid and sustained CEP290 gene editing. A comparable surrogate non-human primate (NHP) vector also achieved productive editing of the NHP CEP290 gene at levels that met the target therapeutic threshold, and demonstrated the ability of CRISPR/Cas9 to edit somatic primate cells in vivo. These results support further development of EDIT-101 for LCA10 and additional CRISPR-based medicines for other inherited retinal disorders.


Subject(s)
Gene Editing , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/physiopathology , Animals , Cell Line , Gene Knock-In Techniques , Humans , Mice , Primates , Reproducibility of Results , Vision, Ocular
2.
Toxicol Pathol ; 43(4): 519-29, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25274659

ABSTRACT

Batracylin (NSC-320846) is a dual inhibitor of DNA topoisomerases I and II. Batracylin advanced as an anticancer agent to Phase I clinical trials where dose limiting hemorrhagic cystitis (bladder inflammation and bleeding) was observed. To further investigate batracylin's mechanism of toxicity, studies were conducted in Fischer 344 rats. Once daily oral administration of 16 or 32 mg/kg batracylin to rats for 4 days caused overt toxicity. Abnormal clinical observations and adverse effects on clinical pathology, urinalysis, and histology indicated acute renal damage and urothelial damage and bone marrow dysfunction. Scanning electron microscopy revealed sloughing of the superficial and intermediate urothelial layers. DNA damage was evident in kidney and bone marrow as indicated by histone γ-H2AX immunofluorescence. After a single oral administration of 16 or 32 mg/kg, the majority of batracylin was converted to N-acetylbatracylin (NAB) with a half-life of 4 hr to 11 hr. Mesna (Mesnex™), a drug known to reduce the incidence of hemorrhagic cystitis induced by ifosfamide or cyclophosphamide, was administered to rats prior to batracylin, but did not alleviate batracylin-induced bladder and renal toxicity. These findings suggest that batracylin results in DNA damage-based mechanisms of toxicity and not an acrolein-based mechanism of toxicity as occurs after ifosfamide or cyclophosphamide administration.


Subject(s)
Kidney Neoplasms/chemically induced , Quinazolines/toxicity , Urinary Bladder Neoplasms/metabolism , Animals , Biomarkers, Tumor/analysis , Body Weight/drug effects , Female , Glycosuria/chemically induced , Histones/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Male , Mesna/pharmacology , Phosphoproteins/metabolism , Quinazolines/pharmacokinetics , Random Allocation , Rats , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/pathology
3.
Biomacromolecules ; 13(3): 579-83, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22304720

ABSTRACT

The nonapeptide hemopressin, which is derived from the α chain of hemoglobin, has been reported to exhibit inverse agonist activity against the CB1 receptor. Administration of this peptide in animal models led to decreased food intake and elicited hypotensive and antinociceptive effects. On the basis of hemopressin's potential in therapeutic applications and the lack of a structure-activity relationship study in literature, we aimed to determine the conformational features of hemopressin under physiological conditions. We conducted transmission electron microscopy experiments of hemopressin, revealing that it self-assembles into fibrils under aqueous conditions at pH 7.4. Circular dichroism and nuclear magnetic resonance experiments indicate that the peptide adopts a mostly extended ß-like structure, which may contribute to its self-assembly and fibril formation.


Subject(s)
Hemoglobins/chemistry , Hemoglobins/metabolism , Nanostructures , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Animals , Circular Dichroism , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Models, Molecular , Rats , Receptor, Cannabinoid, CB1/agonists , Structure-Activity Relationship
4.
Cancer Biol Ther ; 9(6): 469-76, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20087061

ABSTRACT

We previously identified metal-responsive transcription factor-1 (MTF-1) as a positive contributor to mouse fibrosarcoma growth through effects on cell survival, proliferation, tumor angiogenesis and extracellular matrix remodeling. In the present study, we investigated MTF-1 protein expression in human tissues by specific immunostaining of both normal and tumor tissue samples. Immunohistochemical (IHC) staining of a human tissue microarray (TMA), using a unique anti-human MTF-1 antibody, indicated constitutive MTF-1 expression in most normal tissues, with liver and testis displaying comparatively high levels of expression. Nevertheless, MTF-1 protein levels were found to be significantly elevated in diverse human tumor types, including breast, lung and cervical carcinomas. IHC analysis of a separate panel of full-size tissue sections of human breast cancers, including tumor and normal adjacent, surrounding tissue, confirmed and extended the results of the TMA analysis. Taken with our previous findings, this new study suggests a role for MTF-1 in human tumor development, growth or spread. Moreover, the study suggests that MTF-1 could be a novel therapeutic target that offers the opportunity to manipulate metal or redox homeostasis in tumor cells.


Subject(s)
DNA-Binding Proteins/metabolism , Neoplasms/metabolism , Transcription Factors/metabolism , Breast/chemistry , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , DNA-Binding Proteins/genetics , Female , Humans , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Transcription Factors/genetics , Transcription Factor MTF-1
5.
Am J Pathol ; 171(1): 53-67, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17591953

ABSTRACT

Vascular endothelial growth factor-A (VEGF-A) has recently been recognized as an important neuroprotectant in the central nervous system. Given its position as an anti-angiogenic target in the treatment of human diseases, understanding the extent of VEGF's role in neural cell survival is paramount. Here, we used a model of ischemia-reperfusion injury and found that VEGF-A exposure resulted in a dose-dependent reduction in retinal neuron apoptosis. Although mechanistic studies suggested that VEGF-A-induced volumetric blood flow to the retina may be partially responsible for the neuroprotection, ex vivo retinal culture demonstrated a direct neuroprotective effect for VEGF-A. VEGF receptor-2 (VEGFR2) expression was detected in several neuronal cell layers of the retina, and functional analyses showed that VEGFR2 was involved in retinal neuroprotection. VEGF-A was also shown to be involved in the adaptive response to retinal ischemia. Ischemic preconditioning 24 hours before ischemia-reperfusion injury increased VEGF-A levels and substantially decreased the number of apoptotic retinal cells. The protective effect of ischemic preconditioning was reversed after VEGF-A inhibition. Finally, chronic inhibition of VEGF-A function in normal adult animals led to a significant loss of retinal ganglion cells yet had no observable effect on several vascular parameters. These findings have implications for both neural pathologies and ocular vascular diseases, such as diabetic retinopathy and age-related macular degeneration.


Subject(s)
Reperfusion Injury/metabolism , Retina/physiology , Vascular Endothelial Growth Factor A/physiology , Adult , Animals , Apoptosis , Blood Flow Velocity , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Macular Degeneration , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Organ Culture Techniques , Rats , Rats, Long-Evans , Reperfusion Injury/pathology , Retina/drug effects , Retinal Vessels/physiology , Vascular Endothelial Growth Factor Receptor-2/physiology
6.
Nat Struct Biol ; 10(1): 38-44, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12469114

ABSTRACT

Angiopoietins are a recently discovered family of angiogenic factors that interact with the endothelial receptor tyrosine kinase Tie2, either as agonists (angiopoietin-1) or as context-dependent agonists/antagonists (angiopoietin-2). Here we show that angiopoietin-1 has a modular structure unlike any previously characterized growth factor. This modular structure consists of a receptor-binding domain, a dimerization motif and a superclustering motif that forms variable-sized multimers. Genetic engineering of precise multimers of the receptor-binding domain of angiopoietin-1, using surrogate multimerization motifs, reveals that tetramers are the minimal size required for activating endothelial Tie2 receptors. In contrast, engineered dimers can antagonize endothelial Tie2 receptors. Surprisingly, angiopoietin-2 has a modular structure and multimerization state similar to that of angiopoietin-1, and its antagonist activity seems to be a subtle property encoded in its receptor-binding domain.


Subject(s)
Angiopoietins/chemistry , Angiopoietins/metabolism , Receptor, TIE-2/metabolism , Amino Acid Motifs , Amino Acid Sequence , Angiopoietin-1/chemistry , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Angiopoietin-2/chemistry , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Angiopoietins/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Dimerization , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Models, Molecular , Phosphorylation , Protein Binding , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
7.
Biochemistry ; 41(37): 11091-8, 2002 Sep 17.
Article in English | MEDLINE | ID: mdl-12220173

ABSTRACT

Collagens have recently been identified as ligands for discoidin domain receptors (DDR1 and DDR2), generating an interest in studying the properties of binding of DDR to its ligand. We are interested in the interaction of DDR2 with collagen I because of its potential role in liver fibrosis. Our in vitro binding assay utilizes DDR2-Fc fusion proteins, which can be clustered (multimerized) by use of antibodies to form DDR2 complexes. Binding of DDR2 complexes to collagen I coated on plastic plates was established by a microplate-based assay using Eu(3+)-labeled proteins and time-resolved fluorometry. Clustering of the DDR2-Fc with antibody was found to be requisite for binding to collagen in vitro. Using atomic force microscopy (AFM) in an aqueous environment, we characterized the surface topographies of DDR2 complexes and collagen I, and investigated binding of this receptor-ligand pair. We were able to image and identify binding of DDR2 complexes onto individual molecules of triple-helical collagen and provide insight into the number and locations of binding sites on collagen I. In most cases, a single receptor complex bound to a single collagen molecule and there were preferred DDR2 binding sites on the collagen I triple helix. These data were validated by rotary-replication transmission electron microscopy (TEM) of glycerol-sprayed samples.


Subject(s)
Collagen Type I/chemistry , Collagen Type I/ultrastructure , Microscopy, Atomic Force/methods , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/ultrastructure , Receptors, Mitogen/chemistry , Receptors, Mitogen/ultrastructure , Animals , Binding Sites/genetics , Discoidin Domain Receptors , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/genetics , Ligands , Mice , Protein Binding/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Mitogen/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...