Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Eur J Intern Med ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38458880

ABSTRACT

It is important to determine the risk for admission to the intensive care unit (ICU) in patients with COVID-19 presenting at the emergency department. Using artificial neural networks, we propose a new Data Ensemble Refinement Greedy Algorithm (DERGA) based on 15 easily accessible hematological indices. A database of 1596 patients with COVID-19 was used; it was divided into 1257 training datasets (80 % of the database) for training the algorithms and 339 testing datasets (20 % of the database) to check the reliability of the algorithms. The optimal combination of hematological indicators that gives the best prediction consists of only four hematological indicators as follows: neutrophil-to-lymphocyte ratio (NLR), lactate dehydrogenase, ferritin, and albumin. The best prediction corresponds to a particularly high accuracy of 97.12 %. In conclusion, our novel approach provides a robust model based only on basic hematological parameters for predicting the risk for ICU admission and optimize COVID-19 patient management in the clinical practice.

2.
J Cell Mol Med ; 28(4): e18105, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38339761

ABSTRACT

Complement inhibition has shown promise in various disorders, including COVID-19. A prediction tool including complement genetic variants is vital. This study aims to identify crucial complement-related variants and determine an optimal pattern for accurate disease outcome prediction. Genetic data from 204 COVID-19 patients hospitalized between April 2020 and April 2021 at three referral centres were analysed using an artificial intelligence-based algorithm to predict disease outcome (ICU vs. non-ICU admission). A recently introduced alpha-index identified the 30 most predictive genetic variants. DERGA algorithm, which employs multiple classification algorithms, determined the optimal pattern of these key variants, resulting in 97% accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 variants per patient, with 977 total variants detected. This study demonstrates the utility of alpha-index in ranking a substantial number of genetic variants. This approach enables the implementation of well-established classification algorithms that effectively determine the relevance of genetic variants in predicting outcomes with high accuracy.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/genetics , Artificial Intelligence , Algorithms
3.
Environ Monit Assess ; 195(6): 705, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37212953

ABSTRACT

Accurate and reliable flow estimations are of great importance for hydroelectric power generation, flood and drought risk management, and the effective use of water resources. This research carries out a comprehensive study on the application of gated recurrent unit (GRU) neural network, recurrent neural network (RNN), and long short-term memory (LSTM) to predict with river flows at three different streamflow observation stations in Erzincan, Bayburt, and Gümüshane. Monthly streamflow time series covering the years 1978 to 2015 were used to set up artificial intelligence models. During the modeling phase, 70% of the data was divided into training (October 1978-April 2004), 15% validation (May 2004-September 2009), and 15% test set (October 2010-September 2015). Model performances were made according to the correlation coefficient, root mean square error, the ratio of RMSE to the standard deviation, Nash-Sutcliffe efficiency coefficient, index of agreement, and volumetric efficiency values. The calculation results show that GRU leads efficient estimation results for estimating streamflow and can also be used in allied water resources.


Subject(s)
Artificial Intelligence , Deep Learning , Rivers , Environmental Monitoring/methods , Neural Networks, Computer
4.
Clin Immunol ; 246: 109218, 2023 01.
Article in English | MEDLINE | ID: mdl-36586431

ABSTRACT

We aimed to develop a prediction model for intensive care unit (ICU) hospitalization of Coronavirus disease-19 (COVID-19) patients using artificial neural networks (ANN). We assessed 25 laboratory parameters at first from 248 consecutive adult COVID-19 patients for database creation, training, and development of ANN models. We developed a new alpha-index to assess association of each parameter with outcome. We used 166 records for training of computational simulations (training), 41 for documentation of computational simulations (validation), and 41 for reliability check of computational simulations (testing). The first five laboratory indices ranked by importance were Neutrophil-to-lymphocyte ratio, Lactate Dehydrogenase, Fibrinogen, Albumin, and D-Dimers. The best ANN based on these indices achieved accuracy 95.97%, precision 90.63%, sensitivity 93.55%. and F1-score 92.06%, verified in the validation cohort. Our preliminary findings reveal for the first time an ANN to predict ICU hospitalization accurately and early, using only 5 easily accessible laboratory indices.


Subject(s)
COVID-19 , Adult , Humans , Artificial Intelligence , Reproducibility of Results , Neural Networks, Computer , Intensive Care Units
5.
Sci Rep ; 12(1): 14454, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36002470

ABSTRACT

Resilient modulus (Mr) of subgrade soils is one of the crucial inputs in pavement structural design methods. However, the spatial variability of soil properties and the nature of test protocols, the laboratory determination of Mr has become inexpedient. This paper aims to design an accurate soft computing technique for the prediction of Mr of subgrade soils using the hybrid least square support vector machine (LSSVM) approaches. Six swarm intelligence algorithms, namely particle swarm optimization (PSO), grey wolf optimizer (GWO), symbiotic organisms search (SOS), salp swarm algorithm (SSA), slime mould algorithm (SMA), and Harris hawks optimization (HHO) have been applied and compared to optimize the LSSVM parameters. For this purpose, a literature dataset (891 datasets) of different types of soils has been used to design and evaluate the proposed models. The input variables in all of the proposed models included confining stress, deviator stress, unconfined compressive strength, degree of soil saturation, soil moisture content, optimum moisture content, plasticity index, liquid limit, and percent of soil particles (P #200). The accuracy of the proposed models was assessed by comparing the predicted with the observed of Mr values with respect to different statistical analyses, i.e., root means square error (RMSE) and determination coefficient (R2). For modeling the Mr of subgrade soils, percent passing No. 200 sieve, optimum moisture content, and unconfined compressive strength were found to be the most significant variables. It is observed that the performance of LSSVM-GWO, LSSVM-SOS, and LSSVM-SSA outperforms other models in predicting accurate values of Mr. The (RMSE and R2) of the LSSVM-GWO, LSSVM-SSA, and LSSVM-SOS are (6.79 MPa and 0.940), (6.78 MPa and 0.940), and (6.72 MPa and 0.942), respectively, and hence, LSSVM-SOS can be used for high estimating accuracy of Mr of subgrade soils.


Subject(s)
Soil , Support Vector Machine , Algorithms , Intelligence , Least-Squares Analysis
6.
Environ Sci Pollut Res Int ; 29(51): 77157-77187, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35672647

ABSTRACT

This study aims to evaluate the usefulness and effectiveness of four machine learning (ML) models for modelling cyanobacteria blue-green algae (CBGA) at two rivers located in the USA. The proposed modelling framework was based on establishing a link between five water quality variables and the concentration of CBGA. For this purpose, artificial neural network (ANN), extreme learning machine (ELM), random forest regression (RFR), and random vector functional link (RVFL) are developed. First, the four models were developed using only water quality variables. Second, based on the results of the first, a new modelling strategy was introduced based on preprocessing signal decomposition. Hence, the empirical mode decomposition (EMD), the variational mode decomposition (VMD), and the empirical wavelet transform (EWT) were used for decomposing the water quality variables into several subcomponents, and the obtained intrinsic mode functions (IMFs) and multiresolution analysis (MRA) components were used as new input variables for the ML models. Results of the present investigation show that (i) using single models, good predictive accuracy was obtained using the RFR model exhibiting an R and NSE values of ≈0.914 and ≈0.833 for the first station, and ≈0.944 and ≈0.884 for the second station, while the others models, i.e., ANN, RVFL, and ELM, have failed to provide a good estimation of the CBGA; (ii) the decomposition methods have contributed to a significant improvement of the individual models performances; (iii) among the thee decomposition methods, the EMD was found to be superior to the VMD and EWT; and (iv) the ANN and RFR were found to be more accurate compared to the ELM and RVFL models, exhibiting high numerical performances with R and NSE values of approximately ≈0.983, ≈0.967, and ≈0.989 and ≈0.976, respectively.


Subject(s)
Cyanobacteria , Wavelet Analysis , Machine Learning , Neural Networks, Computer , Rivers
7.
J Cell Mol Med ; 26(5): 1445-1455, 2022 03.
Article in English | MEDLINE | ID: mdl-35064759

ABSTRACT

There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.


Subject(s)
COVID-19/genetics , COVID-19/mortality , Neural Networks, Computer , COVID-19/epidemiology , Complement Activation/genetics , Complement Factor H/genetics , Complement System Proteins/genetics , Female , Greece/epidemiology , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Models, Genetic , Morbidity , Polymorphism, Single Nucleotide , Thrombomodulin/genetics
8.
Environ Monit Assess ; 192(12): 761, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33188607

ABSTRACT

Hourly river flow pattern monitoring and simulation is the indispensable precautionary task for river engineering sustainability, water resource management, flood risk mitigation, and impact reduction. Reliable river flow forecasting is highly emphasized to support major decision-makers. This research paper adopts a new implementation approach for the application of a river flow prediction model for hourly prediction of the flow of Mary River in Australia; a novel data-intelligent model called emotional neural network (ENN) was used for this purpose. A historical dataset measured over a 4-year period (2011-2014) at hourly timescale was used in building the ENN-based predictive model. The results of the ENN model were validated against the existing approaches such as the minimax probability machine regression (MPMR), relevance vector machine (RVM), and multivariate adaptive regression splines (MARS) models. The developed models are evaluated against each other for validation purposes. Various numerical and graphical performance evaluators are conducted to assess the predictability of the proposed ENN and the competitive benchmark models. The ENN model, used as an objective simulation tool, revealed an outstanding performance when applied for hourly river flow prediction in comparison with the other benchmark models. However, the order of the model, performance wise, is ENN > MARS > RVM > MPMR. In general, the present results of the proposed ENN model reveal a promising modeling strategy for the hourly simulation of river flow, and such a model can be explored further for its ability to contribute to the state-of-the-art of river engineering and water resources monitoring and future prediction at near real-time forecast horizons.


Subject(s)
Environmental Monitoring , Rivers , Australia , Forecasting , Machine Learning , Neural Networks, Computer
9.
Sci Total Environ ; 701: 134413, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31706212

ABSTRACT

This research proposes and evaluates a new approach for flash flood susceptibility mapping based on Deep Learning Neural Network (DLNN)) algorithm, with a case study at a high-frequency tropical storm area in the northwest mountainous region of Vietnam. Accordingly, a DLNN structure with 192 neurons in 3 hidden layers was proposed to construct an inference model that predicts different levels of susceptibility to flash flood. The Rectified Linear Unit (ReLU) and the sigmoid were selected as the activate function and the transfer function, respectively, whereas the Adaptive moment estimation (Adam) was used to update and optimize the weights of the DLNN. A database for the study area, which includes factors of elevation, slope, curvature, aspect, stream density, NDVI, soil type, lithology, and rainfall, was established to train and validate the proposed model. Feature selection was carried out for these factors using the Information gain ratio. The results show that the DLNN attains a good prediction accuracy with Classification Accuracy Rate = 92.05%, Positive Predictive Value = 94.55% and Negative Predictive Value = 89.55%. Compared to benchmarks, Multilayer Perceptron Neural Network and Support Vector Machine, the DLNN performs better; therefore, it could be concluded that the proposed hybridization of GIS and deep learning can be a promising tool to assist the government authorities and involving parties in flash flood mitigation and land-use planning.

10.
J Environ Manage ; 237: 476-487, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30825780

ABSTRACT

Understanding spatial patterns of forest fire is of key important for fire danger management and ecological implication. This aim of this study was to propose a new machine learning methodology for analyzing and predicting spatial patterns of forest fire danger with a case study of tropical forest fire at Lao Cai province (Vietnam). For this purpose, a Geographical Information System (GIS) database for the study area was established, including ten influencing factors (slope, aspect, elevation, land use, distance to road, normalized difference vegetation index, rainfall, temperature, wind speed, and humidity) and 257 fire locations. The relevance level of these factors with the forest fire was analyzed and assessed using the Mutual Information algorithm. Then, a new hybrid artificial intelligence model named as MARS-DFP, which was Multivariate Adaptive Regression Splines (MARS) optimized by Differential Flower Pollination (DFP), was proposed and used construct forest fire model for generating spatial patterns of forest fire. MARS is employed to build the forest fire model for generalizing a classification boundary that distinguishes fire and non-fire areas, whereas DFP, a metaheuristic approach, was utilized to optimize the model. Finally, global prediction performance of the model was assessed using Area Under the curve (AUC), Classification Accuracy Rate (CAR), Wilcoxon signed-rank test, and various statistical indices. The result demonstrated that the predictive performance of the MARS-DFP model was high (AUC = 0.91 and CAR = 86.57%) and better to those of other benchmark methods, Backpropagation Artificial Neural Network, Adaptive neuro fuzzy inference system, Radial Basis Function Neural Network. This fact confirms that the newly constructed MARS-DFP model is a promising alternative for spatial prediction of forest fire susceptibility.


Subject(s)
Wildfires , Flowers , Machine Learning , Pollination , Vietnam
11.
Sensors (Basel) ; 18(11)2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30384451

ABSTRACT

Flash floods are widely recognized as one of the most devastating natural hazards in the world, therefore prediction of flash flood-prone areas is crucial for public safety and emergency management. This research proposes a new methodology for spatial prediction of flash floods based on Sentinel-1 SAR imagery and a new hybrid machine learning technique. The SAR imagery is used to detect flash flood inundation areas, whereas the new machine learning technique, which is a hybrid of the firefly algorithm (FA), Levenberg⁻Marquardt (LM) backpropagation, and an artificial neural network (named as FA-LM-ANN), was used to construct the prediction model. The Bac Ha Bao Yen (BHBY) area in the northwestern region of Vietnam was used as a case study. Accordingly, a Geographical Information System (GIS) database was constructed using 12 input variables (elevation, slope, aspect, curvature, topographic wetness index, stream power index, toposhade, stream density, rainfall, normalized difference vegetation index, soil type, and lithology) and subsequently the output of flood inundation areas was mapped. Using the database and FA-LM-ANN, the flash flood model was trained and verified. The model performance was validated via various performance metrics including the classification accuracy rate, the area under the curve, precision, and recall. Then, the flash flood model that produced the highest performance was compared with benchmarks, indicating that the combination of FA and LM backpropagation is proven to be very effective and the proposed FA-LM-ANN is a new and useful tool for predicting flash flood susceptibility.

12.
J Adv Res ; 6(4): 587-92, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26199749

ABSTRACT

The evaluation of liquefaction potential of soil due to an earthquake is an important step in geosciences. This article examines the capability of Minimax Probability Machine (MPM) for the prediction of seismic liquefaction potential of soil based on the Cone Penetration Test (CPT) data. The dataset has been taken from Chi-Chi earthquake. MPM is developed based on the use of hyperplanes. It has been adopted as a classification tool. This article uses two models (MODEL I and MODEL II). MODEL I employs Cone Resistance (q c) and Cyclic Stress Ratio (CSR) as input variables. q c and Peak Ground Acceleration (PGA) have been taken as inputs for MODEL II. The developed MPM gives 100% accuracy. The results show that the developed MPM can predict liquefaction potential of soil based on q c and PGA.

SELECTION OF CITATIONS
SEARCH DETAIL
...