Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Med Chem ; 11(5): 597-601, 2020 May 01.
Article in English | MEDLINE | ID: mdl-33479662

ABSTRACT

Modified carbocyclic nucleosides (4a-g) constituting 7-deazapurine, 4'-methyl, exocyclic double bond and 2',3'-hydroxy were synthesized. NOE and X-ray studies of 4c confirmed the α-configuration of 4'-methyl. The anti-HBV assay demonstrated 4e (IC50 = 3.4 µM) without notable cytotoxicity (CC50 = 87.5 µM) as a promising lead for future exploration.

2.
Article in English | MEDLINE | ID: mdl-30689527

ABSTRACT

The need of long-term treatment for chronic HBV, emergence of drug-resistant viruses and inefficiency of currently approved therapies to eliminate covalently closed circular DNA (cccDNA), mandates identification of potent and selective inhibitors of HBV replication with novel mechanisms of action. Entecavir, a carbocyclic guanosine nucleoside analog, is the most potent inhibitor of HBV replication on the market. Moreover, the naturally occurring carbocyclic nucleosides aristeromycin are known for their wide range of antiviral activities. In this research, we have utilized BINAP directed rhodium catalyzed reductive carbocyclization of 1,6-enynes (8a-b) through asymmetric hydrogenation which is an approach, not yet explored in carbocyclic sugar synthesis. Interestingly, we obtained exclusive anti-(9a) and Z-anti (9b) carbocyclic sugars. The new aristeromycin analogs (10a-b) with scaffold combination of entecavir and aristeromycin were then synthesized using the Mitsunobu reaction followed by deprotection.


Subject(s)
Adenosine/analogs & derivatives , Alkynes/chemistry , Rhodium/chemistry , Adenosine/chemical synthesis , Adenosine/chemistry , Catalysis , Cyclization , Humans , Molecular Structure , Oxidation-Reduction , Stereoisomerism
3.
Bioorg Med Chem Lett ; 26(16): 3945-9, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27426303

ABSTRACT

The potential antiviral activity of aristeromycin type of derivatives (I) is limited by associated toxicity due to its possible 5'-O-phosphorylation and S-adenosyl-l-homocysteine hydrolase (SAHase) inhibitory activity. Aristeromycin structure has major pharmacophoric motif as 5'-OH and adenosine base, which may have significant role in enzyme binding followed by activity and or toxicity. Thus, the structural optimization to alter this major motif by replacing with its bioisostere and changing the 5'-O conformation through stereochemistry reversal was of interest. Thus, the inverted stereochemistry at 4'-position coupled with bioisostere of adenosine base in the target compounds (6-7) to access antiviral potential. The stereoselective formation of a key stereoisomer (2a) was achieved exclusively from neplanocin sugar (1a) by reduction in a single step. The novel target molecules (6-7) were synthesized in 4 steps with 55-62% yield. Compound 6 was analyzed by single crystal X-ray diffraction, which confirms the stereoselective formation of α-analogs with highly puckered cyclopentane ring and 2'-endo conformation. The compound 6 shown significant anti-hepatitis B virus activity of 6.5µM with CC50>100µM and yielded a promising lead with novel structural feature.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/chemical synthesis , Cyclopentanes/chemical synthesis , Hepatitis B virus/physiology , Pyrimidines/chemical synthesis , Adenosine/chemical synthesis , Adenosine/chemistry , Adenosine/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line , Cell Survival/drug effects , Crystallography, X-Ray , Cyclopentanes/chemistry , Cyclopentanes/pharmacology , Humans , Molecular Conformation , Pyrimidines/chemistry , Pyrimidines/pharmacology , Stereoisomerism , Virus Replication/drug effects
4.
Article in English | MEDLINE | ID: mdl-26810255

ABSTRACT

Carbocyclic nucleosides are considered as nucleoside mimetic having high therapeutic potentials, however diverse exploration is still limited due to their synthetic difficulties. The major challenges are associated with the preparation of new base and carbocyclic sugar key intermediates. The modified base may provide conformational advantage to achieve better nucleoside mimetics and may also help in increasing the drug-like properties. In this manuscript, we report the use of acetamidine hydrochloride to synthesize 6-methyl-4-amino-pyrazolo[3,4-d]pyrimidine base and regioselective synthesis of six new carbocyclic nucleosides (6a-f) for antiviral evaluation. Theoretical investigations were carried out on the basis of thermodynamic and kinetic stability using MM based energy optimizations and QM based transition state search for the significant regioselectivity, which was further experimentally analyzed by NOE and UV spectroscopy.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Pyrimidine Nucleosides/chemistry , Pyrimidine Nucleosides/chemical synthesis , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...