Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 18(4): 998-1006, 2018 04.
Article in English | MEDLINE | ID: mdl-29178588

ABSTRACT

Porcine islet xenografts have the potential to provide an inexhaustible source of islets for ß cell replacement. Proof-of-concept has been established in nonhuman primates. However, significant barriers to xenoislet transplantation remain, including the poorly understood instant blood-mediated inflammatory reaction and a thorough understanding of early xeno-specific immune responses. A paucity of data exist comparing xeno-specific immune responses with alloislet (AI) responses in primates. We recently developed a dual islet transplant model, which enables direct histologic comparison of early engraftment immunobiology. In this study, we investigate early immune responses to neonatal porcine islet (NPI) xenografts compared with rhesus islet allografts at 1 hour, 24 hours, and 7 days. Within the first 24 hours after intraportal infusion, we identified greater apoptosis (caspase 3 activity and TUNEL [terminal deoxynucleotidyl transferase dUTP nick end labeling])-positive cells) of NPIs compared with AIs. Macrophage infiltration was significantly greater at 24 hours compared with 1 hour in both NPI (wild-type) and AIs. At 7 days, IgM and macrophages were highly specific for NPIs (α1,3-galactosyltransferase knockout) compared with AIs. These findings demonstrate an augmented macrophage and antibody response toward xenografts compared with allografts. These data may inform future immune or genetic manipulations required to improve xenoislet engraftment.


Subject(s)
Disease Models, Animal , Graft Rejection/immunology , Graft Survival/immunology , Inflammation/immunology , Islets of Langerhans Transplantation/immunology , Islets of Langerhans/immunology , Macrophages/immunology , Animals , Animals, Newborn , Apoptosis , Islets of Langerhans/pathology , Macaca mulatta , Swine , Transplantation, Heterologous
2.
Am J Transplant ; 17(5): 1193-1203, 2017 May.
Article in English | MEDLINE | ID: mdl-27888551

ABSTRACT

Costimulation blockade (CoB) via belatacept is a lower-morbidity alternative to calcineurin inhibitor (CNI)-based immunosuppression. However, it has higher rates of early acute rejection. These early rejections are mediated in part by memory T cells, which have reduced dependence on the pathway targeted by belatacept and increased adhesion molecule expression. One such molecule is leukocyte function antigen (LFA)-1. LFA-1 exists in two forms: a commonly expressed, low-affinity form and a transient, high-affinity form, expressed only during activation. We have shown that antibodies reactive with LFA-1 regardless of its configuration are effective in eliminating memory T cells but at the cost of impaired protective immunity. Here we test two novel agents, leukotoxin A and AL-579, each of which targets the high-affinity form of LFA-1, to determine whether this more precise targeting prevents belatacept-resistant rejection. Despite evidence of ex vivo and in vivo ligand-specific activity, neither agent when combined with belatacept proved superior to belatacept monotherapy. Leukotoxin A approached a ceiling of toxicity before efficacy, while AL-579 failed to significantly alter the peripheral immune response. These data, and prior studies, suggest that LFA-1 blockade may not be a suitable adjuvant agent for CoB-resistant rejection.


Subject(s)
Abatacept/pharmacology , Graft Rejection/drug therapy , Graft Survival/immunology , Immunologic Memory/immunology , Kidney Transplantation/adverse effects , Lymphocyte Function-Associated Antigen-1/chemistry , T-Lymphocytes/immunology , Animals , Disease Models, Animal , Glomerular Filtration Rate , Graft Rejection/etiology , Graft Rejection/pathology , Graft Survival/drug effects , Immunologic Memory/drug effects , Immunosuppressive Agents/pharmacology , Kidney Function Tests , Lymphocyte Function-Associated Antigen-1/metabolism , Macaca mulatta , Postoperative Complications , T-Lymphocytes/drug effects , T-Lymphocytes/pathology
3.
Am J Transplant ; 16(2): 550-64, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26436448

ABSTRACT

Belatacept is used to prevent allograft rejection but fails to do so in a sizable minority of patients due to inadequate control of costimulation-resistant T cells. In this study, we report control of costimulation-resistant rejection when belatacept was combined with perioperative alemtuzumab-mediated lymphocyte depletion and rapamycin. To assess the means by which the alemtuzumab, belatacept and rapamycin (ABR) regimen controls belatacept-resistant rejection, we studied 20 ABR-treated patients and characterized peripheral lymphocyte phenotype and functional responses to donor, third-party and viral antigens using flow cytometry, intracellular cytokine staining and carboxyfluorescein succinimidyl ester-based lymphocyte proliferation. Compared with conventional immunosuppression in 10 patients, lymphocyte depletion evoked substantial homeostatic lymphocyte activation balanced by regulatory T and B cell phenotypes. The reconstituted T cell repertoire was enriched for CD28(+) naïve cells, notably diminished in belatacept-resistant CD28(-) memory subsets and depleted of polyfunctional donor-specific T cells but able to respond to third-party and latent herpes viruses. B cell responses were similarly favorable, without alloantibody development and a reduction in memory subsets-changes not seen in conventionally treated patients. The ABR regimen uniquely altered the immune profile, producing a repertoire enriched for CD28(+) T cells, hyporesponsive to donor alloantigen and competent in its protective immune capabilities. The resulting repertoire was permissive for control of rejection with belatacept monotherapy.


Subject(s)
Abatacept/therapeutic use , Graft Rejection/prevention & control , Immunologic Memory/immunology , Kidney Failure, Chronic/immunology , Kidney Transplantation , Sirolimus/therapeutic use , T-Lymphocytes, Regulatory/immunology , Adult , Aged , CD28 Antigens/metabolism , Female , Flow Cytometry , Follow-Up Studies , Glomerular Filtration Rate , Graft Rejection/drug therapy , Graft Rejection/immunology , Graft Survival , Humans , Immunologic Memory/drug effects , Immunosuppressive Agents/therapeutic use , Isoantigens/immunology , Kidney Failure, Chronic/surgery , Kidney Function Tests , Lymphocyte Depletion , Male , Middle Aged , Pilot Projects , Prognosis , Risk Factors , T-Lymphocytes, Regulatory/drug effects , Transplant Recipients , Young Adult
4.
Am J Transplant ; 15(8): 2240-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26139552

ABSTRACT

Vascularized composite allografts (VCAs) are technically feasible. Similar to other organ transplants, VCAs are hampered by the toxicity and incomplete efficacy associated with conventional immunosuppression. Complications attributable to calcineurin inhibitors remain prevalent in the clinical cases reported to date, and these loom particularly large given the nonlifesaving nature of VCAs. Additionally, acute rejection remains almost ubiquitous, albeit controllable with current agents. Costimulation blockade offers the potential to provide prophylaxis from rejection without the adverse consequences of calcineurin-based regimens. In this study, we used a nonhuman-primate model of VCA in conjunction with immunosuppressive regimens containing combinations of B7-specific costimulation blockade with and without adhesion blockade with LFA3-Ig to determine what adjunctive role these agents could play in VCA transplantation when combined with more conventional agents. Compared to tacrolimus, the addition of belatacept improved rejection free allograft survival. The combination with LFA3-Ig reduced CD2(hi) memory T cells, however did not provide additional protection against allograft rejection and hindered protective immunity. Histology paralleled clinical histopathology and Banff grading. These data provide the basis for the study of costimulation blockade in VCA in a relevant preclinical model.


Subject(s)
Allografts , Neovascularization, Pathologic , Animals , Primates
5.
Am J Transplant ; 15(5): 1241-52, 2015 May.
Article in English | MEDLINE | ID: mdl-25702898

ABSTRACT

Islet xenotransplantation is a potential treatment for diabetes without the limitations of tissue availability. Although successful experimentally, early islet loss remains substantial and attributed to an instant blood-mediated inflammatory reaction (IBMIR). This syndrome of islet destruction has been incompletely defined and characterization in pig-to-primate models has been hampered by logistical and statistical limitations of large animal studies. To further investigate IBMIR, we developed a novel in vivo dual islet transplant model to precisely characterize IBMIR as proof-of-concept that this model can serve to properly control experiments comparing modified xenoislet preparations. WT and α1,3-galactosyltransferase knockout (GTKO) neonatal porcine islets were studied in nonimmunosuppressed rhesus macaques. Inert polyethylene microspheres served as a control for the effects of portal embolization. Digital analysis of immunohistochemistry targeting IBMIR mediators was performed at 1 and 24 h after intraportal islet infusion. Early findings observed in transplanted islets include complement and antibody deposition, and infiltration by neutrophils, macrophages and platelets. Insulin, complement, antibody, neutrophils, macrophages and platelets were similar between GTKO and WT islets, with increasing macrophage infiltration at 24 h in both phenotypes. This model provides an objective and internally controlled study of distinct islet preparations and documents the temporal histology of IBMIR.


Subject(s)
Inflammation/immunology , Islets of Langerhans Transplantation/methods , Islets of Langerhans/cytology , Animals , Animals, Genetically Modified , Blood Glucose/chemistry , Blood Platelets/immunology , Complement Activation , Disease Models, Animal , Galactosyltransferases/genetics , Immunohistochemistry , Macaca mulatta , Macrophages/immunology , Neutrophils/immunology , Phenotype , Swine , Time Factors , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...