Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35567007

ABSTRACT

Turmeric oil (TO) exhibits various biological activities with limited therapeutic applications due to its instability, volatility, and poor water solubility. Here, we encapsulated TO in chitosan/alginate nanocapsules (CS/Alg-NCs) using o/w emulsification to enhance its physicochemical characteristics, using poloxamer 407 as a non-ionic surfactant. TO-loaded CS/Alg-NCs (TO-CS/Alg-NCs) were prepared with satisfactory features, encapsulation efficiency, release characteristics, and cytotoxicity against breast cancer cells. The average size of the fabricated TO-CS/Alg-NCs was around 200 nm; their distribution was homogenous, and their shapes were spherical, with smooth surfaces. The TO-CS/Alg-NCs showed a high encapsulation efficiency, of 70%, with a sustained release of TO at approximately 50% after 12 h at pH 7.4 and 5.5. The TO-CS/Alg-NCs demonstrated enhanced cytotoxicity against two breast cancer cells, MDA-MB-231 and MCF-7, compared to the unencapsulated TO, suggesting that CS/Alg-NCs are potential nanocarriers for TO and can serve as prospective candidates for in vivo anticancer activity evaluation.

2.
Pharmaceutics ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36678739

ABSTRACT

Folate receptors (FRs) highly expressed in breast cancers can be used as a recognized marker for preventing off-target delivery of chemotherapeutics. In this study, folic acid (FA)-grafted chitosan-alginate nanocapsules (CS-Alg-NCs) loaded with turmeric oil (TO) were developed for breast cancer targeting. CS was successfully conjugated with FA via an amide bond with a degree of substitution at 12.86%. The TO-loaded FA-grafted CS-Alg-NCs (TO-FA-CS-Alg-NCs) optimized by Box-Behnken design using response surface methodology had satisfactory characteristics with homogenous particle size (189 nm) and sufficient encapsulation efficiency and loading capacity (35.9% and 1.82%, respectively). In vitro release study of the optimized TO-FA-CS-Alg-NCs showed a sustained TO release following the Korsmeyer-Peppas model with a Fickian diffusion mechanism at pH 5.5 and 7.4. The TO-FA-CS-Alg-NCs showed lower IC50 than ungrafted TO-CS-Alg-NCs and unencapsulated TO against MDA-MB-231 and MCF-7 breast cancer cells, suggesting that FA-CS-Alg-NCs can improve anticancer activity of TO through its active targeting to the high FRs expressing breast cancers.

3.
J Org Chem ; 84(7): 4478-4485, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30855950

ABSTRACT

A challenging metal-free azide insertion of α-aryl α-diazoesters in the presence of B(C6F5)3 (5 mol %) was developed for the first time. The reaction features an easy operation, wide substrate scope, and mild conditions and affords the corresponding products in moderate to high yields. More importantly, alkene and alkyne functional groups were well tolerated because no cyclopropanation or cyclopropenation was observed. Furthermore, the corresponding azide products could be converted to primary amines or 1,2,3-triazole derivatives after simple transformations.

4.
Org Lett ; 20(15): 4672-4676, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30033730

ABSTRACT

A catalytic, metal-free O-H bond insertion of α-diazoesters in water in the presence of B(C6F5)3· nH2O (2 mol %) was developed, affording a series of α-hydroxyesters in good to excellent yields. The reaction features easy operation and wide substrate scope, and importantly, no metal is needed as compared with the conventional methods. Significantly, this approach further expands the applications of B(C6F5)3 under water-tolerant conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...