Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673843

ABSTRACT

Neutrophil-myeloperoxidase (MPO) is a heme-containing peroxidase which produces excess amounts of hypochlorous acid during inflammation. While pharmacological MPO inhibition mitigates all indices of experimental colitis, no studies have corroborated the role of MPO using knockout (KO) models. Therefore, we investigated MPO deficient mice in a murine model of colitis. Wild type (Wt) and MPO-deficient mice were treated with dextran sodium sulphate (DSS) in a chronic model of experimental colitis with three acute cycles of DSS-induced colitis over 63 days, emulating IBD relapse and remission cycles. Mice were immunologically profiled at the gut muscoa and the faecal microbiome was assessed via 16S rRNA amplicon sequencing. Contrary to previous pharmacological antagonist studies targeting MPO, MPO-deficient mice showed no protection from experimental colitis during cyclical DSS-challenge. We are the first to report drastic faecal microbiota shifts in MPO-deficient mice, showing a significantly different microbiome profile on Day 1 of treatment, with a similar shift and distinction on Day 29 (half-way point), via qualitative and quantitative descriptions of phylogenetic distances. Herein, we provide the first evidence of substantial microbiome shifts in MPO-deficiency, which may influence disease progression. Our findings have significant implications for the utility of MPO-KO mice in investigating disease models.


Subject(s)
Colitis , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Microbiome , Mice, Knockout , Peroxidase , Animals , Peroxidase/metabolism , Peroxidase/genetics , Mice , Colitis/microbiology , Colitis/chemically induced , Colitis/genetics , Feces/microbiology , Gene Deletion , RNA, Ribosomal, 16S/genetics , Mice, Inbred C57BL
2.
Front Pharmacol ; 11: 556020, 2020.
Article in English | MEDLINE | ID: mdl-33041796

ABSTRACT

Chronic inflammatory bowel disease (IBD) is a condition with multifactorial pathophysiology. To date, there is no permanent cure and the disease is primarily managed by immunosuppressive drugs; long-term use promotes serious side effects including increased risk malignancies. The current study aimed to target neutrophil-myeloperoxidase, a key contributor to the pathogenesis of IBD, through the use of AZD3241that inhibits extracellular myeloperoxidase. Experimental colitis was induced in C57BL/6 male mice by 2% dextran sodium sulfate in drinking water ad libitum over 9 days. Mice received either normal drinking water and peanut butter (control), 2% DSS in drinking water and peanut butter or 2% DSS in drinking water and AZD3241 (30 mg/kg) dispersed in peanut butter daily for 9 days. Administered AZD3241 attenuated body weight loss (10% p<0.05) and improved clinical score (9 fold p<0.05; a score comprising the time-dependent assessment of stool consistency and extent of rectal bleeding), loss of colonic crypts (p<0.001), preserved surface epithelium (p<0.001) and enhanced expression of the transcription factor Nrf-2 (regulator of antioxidants) and enhanced expression of the downstream antioxidant response element haeoxygenase-1 (HO-1) in the colon tissue. Also, the concentration of fecal hemoglobin and the myeloperoxidase specific oxidative damage biomarker 3-chlorotyrosine in the colon were significantly decreased in the presence of AZD3241. This latter result was consistent with AZD3241 inhibiting MPO activity in vitro. Overall, AZD3241 ameliorated the course and severity of experimental colitis through ameliorating MPO derived tissue damage and could be considered a potential therapeutic option, subject to further validation in chronic IBD models.

3.
Int J Mol Sci ; 21(17)2020 09 03.
Article in English | MEDLINE | ID: mdl-32899436

ABSTRACT

Thiocyanate (SCN-) is a pseudohalide anion omnipresent across mammals and is particularly concentrated in secretions within the oral cavity, digestive tract and airway. Thiocyanate can outcompete chlorine anions and other halides (F-, Br-, I-) as substrates for myeloperoxidase by undergoing two-electron oxidation with hydrogen peroxide. This forms their respective hypohalous acids (HOX where X- = halides) and in the case of thiocyanate, hypothiocyanous acid (HOSCN), which is also a bactericidal oxidative species involved in the regulation of commensal and pathogenic microflora. Disease may dysregulate redox processes and cause imbalances in the oxidative profile, where typically favoured oxidative species, such as hypochlorous acid (HOCl), result in an overabundance of chlorinated protein residues. As such, the pharmacological capacity of thiocyanate has been recently investigated for its ability to modulate myeloperoxidase activity for HOSCN, a less potent species relative to HOCl, although outcomes vary significantly across different disease models. To date, most studies have focused on therapeutic effects in respiratory and cardiovascular animal models. However, we note other conditions such as rheumatic arthritis where SCN- administration may worsen patient outcomes. Here, we discuss the pathophysiological role of SCN- in diseases where MPO is implicated.


Subject(s)
Peroxidase/metabolism , Rheumatic Fever/pathology , Thiocyanates/pharmacology , Animals , Humans , Rheumatic Fever/drug therapy , Rheumatic Fever/enzymology
4.
Arch Biochem Biophys ; 692: 108490, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32721434

ABSTRACT

Ulcerative colitis is a condition characterised by the infiltration of leukocytes into the gastrointestinal wall. Leukocyte-MPO catalyses hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) formation from chloride (Cl-) and thiocyanous (SCN-) anions, respectively. While HOCl indiscriminately oxidises biomolecules, HOSCN primarily targets low-molecular weight protein thiols. Oxidative damage mediated by HOSCN may be reversible, potentially decreasing MPO-associated host tissue destruction. This study investigated the effect of SCN- supplementation in a model of acute colitis. Female mice were supplemented dextran sodium sulphate (DSS, 3% w/v) in the presence of 10 mM Cl- or SCN- in drinking water ad libitum, or with salts (NaCl and NaSCN only) or water only (controls). Behavioural studies showed mice tolerated NaSCN and NaCl-treated water with water-seeking frequency. Ion-exchange chromatography showed increased fecal and plasma SCN- levels in thiocyanate supplemented mice; plasma SCN- reached similar fold-increase for smokers. Overall there was no difference in weight loss and clinical score, mucin levels, crypt integrity and extent of cellular infiltration between DSS/SCN- and DSS/Cl- groups. Neutrophil recruitment remained unchanged in DSS-treated mice, as assessed by fecal calprotectin levels. Total thiol and tyrosine phosphatase activity remained unchanged between DSS/Cl- and DSS/SCN- groups, however, colonic tissue showed a trend in decreased 3-chlorotyrosine (1.5-fold reduction, p < 0.051) and marked increase in colonic GCLC, the rate-limiting enzyme in glutathione synthesis. These data suggest that SCN- administration can modulate MPO activity towards a HOSCN-specific pathway, however, this does not alter the development of colitis within a DSS murine model.


Subject(s)
Colitis , Colon , Dextran Sulfate/toxicity , Peroxidase/metabolism , Thiocyanates/pharmacology , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/enzymology , Colitis/pathology , Colon/enzymology , Colon/pathology , Disease Models, Animal , Female , Mice
5.
Redox Biol ; 28: 101333, 2020 01.
Article in English | MEDLINE | ID: mdl-31593888

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic condition characterised by leukocyte recruitment to the gut mucosa. Leukocyte myeloperoxidase (MPO) produces the two-electron oxidant hypochlorous acid (HOCl), damaging tissue and playing a role in cellular recruitment, thereby exacerbating gut injury. We tested whether the MPO-inhibitor, 4-Methoxy-TEMPO (MetT), ameliorates experimental IBD. Colitis was induced in C57BL/6 mice by 3% w/v dextran-sodium-sulfate (DSS) in drinking water ad libitum over 9-days with MetT (15 mg/kg; via i. p. injection) or vehicle control (10% v/v DMSO+90% v/v phosphate buffered saline) administered twice daily during DSS challenge. MetT attenuated body-weight loss (50%, p < 0.05, n = 6), improved clinical score (53%, p < 0.05, n = 6) and inhibited serum lipid peroxidation. Histopathological damage decreased markedly in MetT-treated mice, as judged by maintenance of crypt integrity, goblet cell density and decreased cellular infiltrate. Colonic Ly6C+, MPO-labelled cells and 3-chlorotyrosine (3-Cl-Tyr) decreased in MetT-treated mice, although biomarkers for nitrosative stress (3-nitro-tyrosine-tyrosine; 3-NO2-Tyr) and low-molecular weight thiol damage (assessed as glutathione sulfonamide; GSA) were unchanged. Interestingly, MetT did not significantly impact colonic IL-10 and IL-6 levels, suggesting a non-immunomodulatory pathway. Overall, MetT ameliorated the severity of experimental IBD, likely via a mechanism involving the modulation of MPO-mediated damage.


Subject(s)
Colitis/etiology , Colitis/pathology , Cyclic N-Oxides/pharmacology , Dextran Sulfate/adverse effects , Disease Susceptibility , Protective Agents/pharmacology , Animals , Biopsy , Colitis/diagnostic imaging , Colitis/drug therapy , Disease Models, Animal , Immunohistochemistry , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Mice , Optical Imaging , Oxidation-Reduction , Oxidative Stress , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...