Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 281(41): 30326-35, 2006 Oct 13.
Article in English | MEDLINE | ID: mdl-16877380

ABSTRACT

In cholestasis, the accumulation of organic anions in hepatocytes is reduced by transporters (multidrug resistance-associated proteins and OSTalpha-OSTbeta) able to extrude them across the basolateral membrane. Here we investigated whether organic anion-transporting polypeptides (OATPs) may contribute to this function. Xenopus laevis oocytes expressing human carboxylesterase-1 efficiently loaded cholic acid (CA) methyl ester, which was cleaved to CA and exported. Expression of OATP8/1B3 enhanced CA efflux, which was trans-activated by taurocholate but trans-inhibited by reduced (GSH) and oxidized (GSSG) glutathione. Moreover, taurocholate and estradiol 17beta-D-glucuronide, but not bicarbonate and glutamate, cis-inhibited OATP8/1B3-mediated bile acid transport, whereas glutathione cis-stimulated this process, which involved the transport of glutathione itself with a stoichiometry of 2:1 (GSH/bile acid). No cis-activation by glutathione of OATP-C/1B1 was found. Using real time quantitative reverse transcription-PCR, the absolute abundance of OATP-A/1A2, OATP-C/1B1, and OATP8/1B3 mRNA in human liver biopsies was measured. In healthy liver, expression levels of OATP-C/1B1 were approximately 5-fold those of OATP8/1B3 and >100-fold those of OATP-A/1A2. This situation was not substantially modified in several cholestatic liver diseases studied here. In conclusion, although both OATP-C/1B1 and OATP8/1B3 are highly expressed, and able to transport bile acids, their mechanisms of action are different. OATP-C/1B1 may be involved in uptake processes, whereas OATP8/1B3 may mediate the extrusion of organic anions by symporting with glutathione as a normal route of exporting metabolites produced by hepatocytes or preventing their intracellular accumulation when their vectorial traffic toward the bile is impaired.


Subject(s)
Bile Acids and Salts/metabolism , Glutathione/metabolism , Hepatocytes/metabolism , Organic Anion Transporters, Sodium-Independent/physiology , Animals , Biological Transport , Carboxylic Ester Hydrolases/biosynthesis , Cholates/metabolism , Estradiol/analogs & derivatives , Estradiol/chemistry , Humans , Oocytes/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Rats , Solute Carrier Organic Anion Transporter Family Member 1B3 , Taurocholic Acid/pharmacology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...