Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Justice ; 58(1): 7-16, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29332697

ABSTRACT

Ignitable liquids such as fuels, alcohols and thinners can be used in criminal activities, for instance arsons. Forensic experts require to know their chemical compositions, as well as to understand how different modification effects could impact them, in order to detect, classify and identify them properly in fire debris. The acid alteration/acidification of ignitable liquids is a modification effect that sharply alters the chemical composition, for example, of gasoline and diesel fuel, interfering in the forensic analysis and result interpretation. However, to date there is little information about the consequences of this effect over other accelerants of interests. In this research paper, the alteration by sulfuric acid of several commercial thinners and other accelerants of potential use in arsons is studied in-depth. For that purpose, spectral (by ATR-FTIR) and chromatographic (by GC-MS) data were obtained from neat and acidified samples. Then, the spectral and chromatographic modifications of each studied ignitable liquid were discussed, proposing several chemical mechanisms that explain the new by-products produced and the gradual disappearance of the initial compounds. Hydrolysis, Fischer esterification and alkylation reactions are involved in the modification of esters, alcohols, ketones and aromatic compounds of the studied ignitable liquids. This information could be crucial for correctly identifying these accelerants. Additionally, an exploratory analysis revealed that some of the most altered ignitable liquid samples might be very similar with each other, which could have impact on casework.

2.
Phytochem Anal ; 26(6): 395-403, 2015.
Article in English | MEDLINE | ID: mdl-26095961

ABSTRACT

INTRODUCTION: Understanding the complex chemical signalling of plants and insects is an important component of chemical ecology. Accordingly, the collection and analysis of chemical cues from plants in their natural environment is integral to elucidation of plant-insect communications. Remote plant locations and the need for a large number of replicates make in situ headspace analyses a daunting logistical challenge. A hand-held, portable GC-MS system was used to discriminate between damaged and undamaged Centaurea solstitialis (yellow starthistle) flower heads in both a potted-plant and natural setting. OBJECTIVE: To determine if a portable GC-MS system was capable of distinguishing between undamaged and mechanically damaged plant treatments, and plant environments. METHODOLOGY: A portable GC-MS utilising needle trap adsorbent technology was used to collect and analyse in situ headspace volatiles of varying yellow starthistle treatments. Principal component analysis (PCA) was used to distinguish treatments and identify biomarker volatiles. Analysis of variance (ANOVA) was used to determine differences between treatment volatile amounts. RESULTS: The portable GC-MS system detected 31 volatiles from the four treatments. Each GC-MS run was completed in less than 3 min. PCA showed four distinct clusters representing the four treatments - damaged and undamaged potted plant, and damaged and undamaged natural plant. Damage-specific volatiles were identified. CONCLUSION: The portable GC-MS system distinguished the treatments based on their detected volatile profiles. Additional statistical analysis identified five possible biomarker volatiles for the treatments, among them cyclosativene and copaene, which indicated damaged flower heads.


Subject(s)
Centaurea/chemistry , Gas Chromatography-Mass Spectrometry/instrumentation , Gas Chromatography-Mass Spectrometry/methods , Inflorescence/chemistry , Volatile Organic Compounds/analysis , Environment , Inflorescence/growth & development , Passive Cutaneous Anaphylaxis
SELECTION OF CITATIONS
SEARCH DETAIL
...