Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731936

ABSTRACT

Multiple myeloma is a malignancy characterized by the accumulation of malignant plasma cells in bone marrow and the production of monoclonal immunoglobulin. A hallmark of cancer is the evasion of immune surveillance. Histone deacetylase inhibitors have been shown to promote the expression of silenced molecules and hold potential to increase the anti-MM efficacy of immunotherapy. The aim of the present work was to assess the potential effect of tinostamustine (EDO-S101), a first-in-class alkylating deacetylase inhibitor, in combination with daratumumab, an anti-CD38 monoclonal antibody (mAb), through different preclinical studies. Tinostamustine increases CD38 expression in myeloma cell lines, an effect that occurs in parallel with an increment in CD38 histone H3 acetylation levels. Also, the expression of MICA and MICB, ligands for the NK cell activating receptor NKG2D, augments after tinostamustine treatment in myeloma cell lines and primary myeloma cells. Pretreatment of myeloma cell lines with tinostamustine increased the sensitivity of these cells to daratumumab through its different cytotoxic mechanisms, and the combination of these two drugs showed a higher anti-myeloma effect than individual treatments in ex vivo cultures of myeloma patients' samples. In vivo data confirmed that tinostamustine pretreatment followed by daratumumab administration significantly delayed tumor growth and improved the survival of mice compared to individual treatments. In summary, our results suggest that tinostamustine could be a potential candidate to improve the efficacy of anti-CD38 mAbs.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Multiple Myeloma , NK Cell Lectin-Like Receptor Subfamily K , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Humans , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacology , Mice , Cell Line, Tumor , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Xenograft Model Antitumor Assays , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Membrane Glycoproteins/metabolism , Drug Synergism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Up-Regulation/drug effects
2.
Neuro Oncol ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507464

ABSTRACT

BACKGROUND: Glioblastoma (GBM) commonly displays epidermal growth factor receptor (EGFR) alterations (mainly amplification and EGFRvIII) and TAT-Cx43266-283 is a Src-inhibitory peptide with antitumor properties in preclinical GBM models. Given the link between EGFR and Src, the aim of this study was to explore the role of EGFR in the antitumor effects of TAT-Cx43266-283. METHODS: The effect of TAT-Cx43266-283, temozolomide (TMZ) and erlotinib (EGFR inhibitor) was studied in patient-derived GBM stem cells (GSCs) and murine neural stem cells (NSCs) with and without EGFR alterations, in vitro and in vivo. EGFR alterations were analyzed by Western blot (WB) and Fluorescence In Situ Hybridization (FISH) in these cells, and compared with Src activity and survival in GBM samples from TCGA. RESULTS: The effect of TAT-Cx43266-283 correlated with EGFR alterations in a set of patient-derived GSCs and was stronger than that exerted by TMZ and erlotinib. In fact, TAT-Cx43266-283 only affected NSCs with EGFR alterations, but not healthy NSCs. EGFR alterations correlated with Src activity and poor survival in GBM patients. Finally, tumors generated from NSCs with EGFR alterations, showed a decrease in growth, invasiveness and vascularization after treatment with TAT-Cx43266-283, which enhanced the survival of immunocompetent mice. CONCLUSION: Clinically relevant EGFR alterations are predictors of TAT-Cx43266-283 response and part of its mechanism of action, even in TMZ- and erlotinib-resistant GSCs. TAT-Cx43266-283 targets NSCs with GBM-driver mutations, including EGFR alterations, in an immunocompetent GBM model in vivo, suggesting a promising effect on GBM recurrence. Together, this study represents an important step towards the clinical application of TAT-Cx43266-283.

3.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886866

ABSTRACT

Ovarian cancer (OC) is the most lethal gynecological malignancy; therefore, more effective treatments are urgently needed. We recently reported that chloroquine (CQ) increased reactive oxygen species (ROS) in OC cell lines (OCCLs), causing DNA double-strand breaks (DSBs). Here, we analyzed whether these lesions are repaired by nonhomologous end joining (NHEJ), one of the main pathways involved in DSB repair, and if the combination of CQ with NHEJ inhibitors (NHEJi) could be effective against OC. We found that NHEJ inhibition increased the persistence of γH2AX foci after CQ-induced DNA damage, revealing an essential role of this pathway in the repair of the lesions. NHEJi decreased the proliferation of OCCLs and a strong in vitro synergistic effect on apoptosis induction was observed when combined with CQ. This effect was largely abolished by the antioxidant N-Acetyl-L-cysteine, revealing the critical role of ROS and DSB generation in CQ/NHEJi-induced lethality. We also found that the NHEJ efficiency in OCCLs was not affected by treatment with Panobinostat, a pan-histone deacetylase inhibitor that also synergizes with CQ in OCCLs by impairing homologous recombination. Accordingly, the triple combination of CQ-NHEJi-Panobinostat exerted a stronger in vitro synergistic effect. Altogether, our data suggest that the combination of these drugs could represent new therapeutic strategies against OC.


Subject(s)
Chloroquine , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Chloroquine/pharmacology , DNA Breaks, Double-Stranded , DNA Damage , DNA End-Joining Repair , DNA Repair , Female , Humans , Ovarian Neoplasms/drug therapy , Panobinostat , Reactive Oxygen Species
4.
Cells ; 10(3)2021 03 04.
Article in English | MEDLINE | ID: mdl-33806619

ABSTRACT

BH3-mimetics targeting anti-apoptotic proteins such as MCL-1 (S63845) or BCL-2 (venetoclax) are currently being evaluated as effective therapies for the treatment of multiple myeloma (MM). Interleukin 6, produced by mesenchymal stromal cells (MSCs), has been shown to modify the expression of anti-apoptotic proteins and their interaction with the pro-apoptotic BIM protein in MM cells. In this study, we assess the efficacy of S63845 and venetoclax in MM cells in direct co-culture with MSCs derived from MM patients (pMSCs) to identify additional mechanisms involved in the stroma-induced resistance to these agents. MicroRNAs miR-193b-3p and miR-21-5p emerged among the top deregulated miRNAs in myeloma cells when directly co-cultured with pMSCs, and we show their contribution to changes in MCL-1 and BCL-2 protein expression and in the activity of S63845 and venetoclax. Additionally, direct contact with pMSCs under S63845 and/or venetoclax treatment modifies myeloma cell dependence on different BCL-2 family anti-apoptotic proteins in relation to BIM, making myeloma cells more dependent on the non-targeted anti-apoptotic protein or BCL-XL. Finally, we show a potent effect of the combination of S63845 and venetoclax even in the presence of pMSCs, which supports this combinatorial approach for the treatment of MM.


Subject(s)
Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Multiple Myeloma/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrimidines/therapeutic use , Sulfonamides/therapeutic use , Thiophenes/therapeutic use , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Resistance, Neoplasm/drug effects , Humans , Multiple Myeloma/pathology , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Thiophenes/pharmacology
5.
Nat Commun ; 12(1): 421, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462210

ABSTRACT

Multiple myeloma (MM) progression and myeloma-associated bone disease (MBD) are highly dependent on bone marrow mesenchymal stromal cells (MSCs). MM-MSCs exhibit abnormal transcriptomes, suggesting the involvement of epigenetic mechanisms governing their tumor-promoting functions and prolonged osteoblast suppression. Here, we identify widespread DNA methylation alterations of bone marrow-isolated MSCs from distinct MM stages, particularly in Homeobox genes involved in osteogenic differentiation that associate with their aberrant expression. Moreover, these DNA methylation changes are recapitulated in vitro by exposing MSCs from healthy individuals to MM cells. Pharmacological targeting of DNMTs and G9a with dual inhibitor CM-272 reverts the expression of hypermethylated osteogenic regulators and promotes osteoblast differentiation of myeloma MSCs. Most importantly, CM-272 treatment prevents tumor-associated bone loss and reduces tumor burden in a murine myeloma model. Our results demonstrate that epigenetic aberrancies mediate the impairment of bone formation in MM, and its targeting by CM-272 is able to reverse MBD.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Diseases/drug therapy , DNA Methylation/drug effects , Enzyme Inhibitors/pharmacology , Mesenchymal Stem Cells/drug effects , Multiple Myeloma/drug therapy , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Agents/therapeutic use , Bone Diseases/diagnosis , Bone Diseases/genetics , Bone Diseases/pathology , Bone Marrow/pathology , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/metabolism , Enzyme Inhibitors/therapeutic use , Epigenesis, Genetic/drug effects , Female , Femur/diagnostic imaging , Femur/pathology , Gene Expression Regulation, Neoplastic/drug effects , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Humans , Male , Mesenchymal Stem Cells/pathology , Mice , Middle Aged , Multiple Myeloma/complications , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Osteogenesis/drug effects , Osteogenesis/genetics , Xenograft Model Antitumor Assays
6.
Cancers (Basel) ; 12(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987735

ABSTRACT

BACKGROUND: Proviral Insertion site for Moloney murine leukemia virus (PIM) kinases are overexpressed in hematologic malignancies, including multiple myeloma. Previous preclinical data from our group demonstrated the anti-myeloma effect of the pan-PIM kinase inhibitor PIM447. METHODS: Based on those data, we evaluate here, by in vitro and in vivo studies, the activity of the triple combination of PIM447 + pomalidomide + dexamethasone (PIM-Pd) in multiple myeloma. RESULTS: Our results show that the PIM-Pd combination exerts a potent anti-myeloma effect in vitro and in vivo, where it markedly delays tumor growth and prolongs survival of treated mice. Mechanism of action studies performed in vitro and on mice tumor samples suggest that the combination PIM-Pd inhibits protein translation processes through the convergent inhibition of c-Myc and mTORC1, which subsequently disrupts the function of eIF4E. Interestingly the MM pro-survival factor IRF4 is also downregulated after PIM-Pd treatment. As a whole, all these molecular changes would promote cell cycle arrest and deregulation of metabolic pathways, including glycolysis and lipid biosynthesis, leading to inhibition of myeloma cell proliferation. CONCLUSIONS: Altogether, our data support the clinical evaluation of the triple combination PIM-Pd for the treatment of patients with multiple myeloma.

7.
Leukemia ; 34(6): 1599-1612, 2020 06.
Article in English | MEDLINE | ID: mdl-31974435

ABSTRACT

The deletion of 11q (del(11q)) invariably comprises ATM gene in chronic lymphocytic leukemia (CLL). Concomitant mutations in this gene in the remaining allele have been identified in 1/3 of CLL cases harboring del(11q), being the biallelic loss of ATM associated with adverse prognosis. Although the introduction of targeted BCR inhibition has significantly favored the outcomes of del(11q) patients, responses of patients harboring ATM functional loss through biallelic inactivation are unexplored, and the development of resistances to targeted therapies have been increasingly reported, urging the need to explore novel therapeutic approaches. Here, we generated isogenic CLL cell lines harboring del(11q) and ATM mutations through CRISPR/Cas9-based gene-editing. With these models, we uncovered a novel therapeutic vulnerability of del(11q)/ATM-mutated cells to dual BCR and PARP inhibition. Ex vivo studies in the presence of stromal stimulation on 38 CLL primary samples confirmed a synergistic action of the combination of olaparib and ibrutinib in del(11q)/ATM-mutated CLL patients. In addition, we showed that ibrutinib produced a homologous recombination repair impairment through RAD51 dysregulation, finding a synergistic link of both drugs in the DNA damage repair pathway. Our data provide a preclinical rationale for the use of this combination in CLL patients with this high-risk cytogenetic abnormality.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutagenesis, Site-Directed/methods , Adenine/analogs & derivatives , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Chromosome Deletion , Chromosomes, Human, Pair 11/genetics , Drug Synergism , Humans , Mice , Mutation , Phthalazines/pharmacology , Piperazines/pharmacology , Piperidines , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcr/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
9.
Haematologica ; 102(12): 2113-2124, 2017 12.
Article in English | MEDLINE | ID: mdl-28860344

ABSTRACT

Kinesin spindle protein inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (ARRY-520), an inhibitor of this protein, has demonstrated activity in heavily pre-treated multiple myeloma patients. The aim of the work herein was to investigate the activity of filanesib in combination with pomalidomide plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. The ability of filanesib to enhance the activity of pomalidomide plus dexamethasone was studied in several in vitro and in vivo models. Mechanisms of this synergistic combination were dissected by gene expression profiling, immunostaining, cell cycle and short interfering ribonucleic acid studies. Filanesib showed in vitro, ex vivo, and in vivo synergy with pomalidomide plus dexamethasone treatment. Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and was shown to be mediated by the impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, the triple combination increased the activation of the proapoptotic protein BAX, which has previously been associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone, and supported the initiation of a recently activated trial being conducted by the Spanish Myeloma group which is investigating this combination in relapsed myeloma patients.


Subject(s)
Dexamethasone/therapeutic use , Kinesins/antagonists & inhibitors , Multiple Myeloma/drug therapy , Thalidomide/analogs & derivatives , Thiadiazoles/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cells, Cultured , Drug Synergism , Humans , Mice , Thalidomide/therapeutic use , Treatment Outcome
10.
Clin Cancer Res ; 23(21): 6602-6615, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28790111

ABSTRACT

Purpose: The search for new drugs that control the continuous relapses of multiple myeloma is still required. Here, we report for the first time the potent antimyeloma activity of amiloride, an old potassium-sparing diuretic approved for the treatment of hypertension and edema due to heart failure.Experimental Design: Myeloma cell lines and primary samples were used to evaluate cytotoxicity of amiloride. In vivo studies were carried out in a xenograft mouse model. The mechanisms of action were investigated using RNA-Seq experiments, qRT-PCR, immunoblotting, and immunofluorescence assays.Results: Amiloride-induced apoptosis was observed in a broad panel of multiple myeloma cell lines and in a xenograft mouse model. Moreover, amiloride also had a synergistic effect when combined with dexamethasone, melphalan, lenalidomide, and pomalidomide. RNA-Seq experiments showed that amiloride not only significantly altered the level of transcript isoforms and alternative splicing events, but also deregulated the spliceosomal machinery. In addition, disruption of the splicing machinery in immunofluorescence studies was associated with the inhibition of myeloma cell viability after amiloride exposure. Although amiloride was able to induce apoptosis in myeloma cells lacking p53 expression, activation of p53 signaling was observed in wild-type and mutated TP53 cells after amiloride exposure. On the other hand, we did not find a significant systemic toxicity in mice treated with amiloride.Conclusions: Overall, our results demonstrate the antimyeloma activity of amiloride and provide a mechanistic rationale for its use as an alternative treatment option for relapsed multiple myeloma patients, especially those with 17p deletion or TP53 mutations that are resistant to current therapies. Clin Cancer Res; 23(21); 6602-15. ©2017 AACR.


Subject(s)
Amiloride/administration & dosage , Diuretics/administration & dosage , Drug Synergism , Multiple Myeloma/drug therapy , Tumor Suppressor Protein p53/genetics , Amiloride/adverse effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Diuretics/adverse effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
12.
J Hematol Oncol ; 10(1): 127, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28633670

ABSTRACT

BACKGROUND: Despite recent advances in the treatment of multiple myeloma (MM), the prognosis of most patients remains poor, and resistance to traditional and new drugs frequently occurs. EDO-S101 is a novel therapeutic agent conceived as the fusion of a histone deacetylase inhibitor radical to bendamustine, with the aim of potentiating its alkylating activity. METHODS: The efficacy of EDO-S101 was evaluated in vitro, ex vivo and in vivo, alone, and in combination with standard anti-myeloma agents. The underlying mechanisms of action were also evaluated on MM cell lines, patient samples, and different murine models. RESULTS: EDO-S101 displayed potent activity in vitro in MM cell lines (IC50 1.6-4.8 µM) and ex vivo in cells isolated from MM patients, which was higher than that of bendamustine and independent of the p53 status and previous melphalan resistance. This activity was confirmed in vivo, in a CB17-SCID murine plasmacytoma model and in de novo Vk*MYC mice, leading to a significant survival improvement in both models. In addition, EDO-S101 was the only drug with single-agent activity in the multidrug resistant Vk12653 murine model. Attending to its mechanism of action, the molecule showed both, a HDACi effect (demonstrated by α-tubulin and histone hyperacetylation) and a DNA-damaging effect (shown by an increase in γH2AX); the latter being again clearly more potent than that of bendamustine. Using a reporter plasmid integrated into the genome of some MM cell lines, we demonstrate that, apart from inducing a potent DNA damage, EDO-S101 specifically inhibited the double strand break repair by the homologous recombination pathway. Moreover, EDO-S101 treatment reduced the recruitment of repair proteins such as RAD51 to DNA-damage sites identified as γH2AX foci. Finally, EDO-S101 preclinically synergized with bortezomib, both in vitro and in vivo. CONCLUSION: These findings provide rationale for the clinical investigation of EDO-S101 in MM, either as a single agent or in combination with other anti-MM drugs, particularly proteasome inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzimidazoles/therapeutic use , DNA Damage/drug effects , DNA Repair/drug effects , Histone Deacetylase Inhibitors/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bendamustine Hydrochloride/analogs & derivatives , Bendamustine Hydrochloride/pharmacology , Bendamustine Hydrochloride/therapeutic use , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Humans , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, SCID , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/pathology
13.
Clin Cancer Res ; 23(1): 225-238, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27440267

ABSTRACT

PURPOSE: PIM kinases are a family of serine/threonine kinases recently proposed as therapeutic targets in oncology. In the present work, we have investigated the effects of the novel pan-PIM kinase inhibitor, PIM447, on myeloma cells and myeloma-associated bone disease using different preclinical models. EXPERIMENTAL DESIGN: In vitro/ex vivo cytotoxicity of PIM447 was evaluated on myeloma cell lines and patient samples. Synergistic combinations with standard treatments were analyzed with Calcusyn Software. PIM447 effects on bone cells were assessed on osteogenic and osteoclastogenic cultures. The mechanisms of PIM447 were explored by immunoblotting, qPCR, and immunofluorescence. A murine model of disseminated multiple myeloma was employed for in vivo studies. RESULTS: PIM447 is cytotoxic for myeloma cells due to cell-cycle disruption and induction of apoptosis mediated by a decrease in phospho-Bad (Ser112) and c-Myc levels and the inhibition of mTORC1 pathway. Importantly, PIM447 demonstrates a very strong synergy with different standard treatments such as bortezomib + dexamethasone (combination index, CI = 0.002), lenalidomide + dexamethasone (CI = 0.065), and pomalidomide + dexamethasone (CI = 0.077). PIM447 also inhibits in vitro osteoclast formation and resorption, downregulates key molecules involved in these processes, and partially disrupts the F-actin ring, while increasing osteoblast activity and mineralization. Finally, PIM447 significantly reduced the tumor burden and prevented tumor-associated bone loss in a disseminated murine model of human myeloma. CONCLUSIONS: Our results demonstrate dual antitumoral and bone-protective effects of PIM447. This fact, together with the very strong synergy exhibited with standard-of-care treatments, supports the future clinical development of this drug in multiple myeloma. Clin Cancer Res; 23(1); 225-38. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Bone and Bones/drug effects , Bone and Bones/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Protective Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Bone Resorption/drug therapy , Bone Resorption/genetics , Bone Resorption/metabolism , Bone Resorption/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Gene Expression , Humans , Mice , Multiple Myeloma/drug therapy , Osteoclasts/drug effects , Osteoclasts/metabolism , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Standard of Care , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
14.
Haematologica ; 102(1): 168-175, 2017 01.
Article in English | MEDLINE | ID: mdl-27540138

ABSTRACT

Despite new advances in multiple myeloma treatment and the consequent improvement in overall survival, most patients relapse or become refractory to treatment. This suggests that new molecules and combinations that may further inhibit important survival pathways for these tumor cells are needed. In this context, zalypsis is a novel compound, derived from marine organisms, with a powerful preclinical anti-myeloma effect based on the sensitivity of malignant plasma cells to DNA-damage induction; and it has already been tested in a phase I/II clinical trial in multiple myeloma. We hypothesized that the addition of this compound to the combination of bortezomib plus dexamethasone may improve efficacy with acceptable toxicity. The triple combination demonstrated strong synergy and higher efficacy compared with double combinations; not only in vitro, but also ex vivo and, especially, in in vivo experiments. The triple combination triggers cell death, mainly through a synergistic induction of DNA damage and a decrease in the nuclear localization of nuclear factor kappa B. Our findings support the clinical evaluation of this combination for relapsed and refractory myeloma patients.


Subject(s)
Bortezomib/pharmacology , DNA Damage/drug effects , Dexamethasone/pharmacology , Multiple Myeloma/genetics , Tetrahydroisoquinolines/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Caspases/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Survival/drug effects , Cell Survival/genetics , Disease Models, Animal , Drug Synergism , Humans , Membrane Potential, Mitochondrial/drug effects , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/mortality , Multiple Myeloma/pathology , NF-kappa B/metabolism , Protein Transport/drug effects , Xenograft Model Antitumor Assays
15.
Oncotarget ; 8(67): 110994-111011, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29340032

ABSTRACT

Previous observations indicated that C3G (RAPGEF1) promotes α-granule release, evidenced by the increase in P-selectin exposure on the platelet surface following its activation. The goal of the present study is to further characterize the potential function of C3G as a modulator of the platelet releasate and its implication in the regulation of angiogenesis. Proteomic analysis revealed a decreased secretion of anti-angiogenic factors from activated transgenic C3G and C3G∆Cat platelets. Accordingly, the secretome from both transgenic platelets had an overall pro-angiogenic effect as evidenced by an in vitro capillary-tube formation assay with HUVECs (human umbilical vein endothelial cells) and by two in vivo models of heterotopic tumor growth. In addition, transgenic C3G expression in platelets greatly increased mouse melanoma cells metastasis. Moreover, immunofluorescence microscopy showed that the pro-angiogenic factors VEGF and bFGF were partially retained into α-granules in thrombin- and ADP-activated mouse platelets from both, C3G and C3GΔCat transgenic mice. The observed interaction between C3G and Vesicle-associated membrane protein (Vamp)-7 could explain these results. Concomitantly, increased platelet spreading in both transgenic platelets upon thrombin activation supports this novel function of C3G in α-granule exocytosis. Collectively, our data point out to the co-existence of Rap1GEF-dependent and independent mechanisms mediating C3G effects on platelet secretion, which regulates pathological angiogenesis in tumors and other contexts. The results herein support an important role for platelet C3G in angiogenesis and metastasis.

16.
J Hematol Oncol ; 9(1): 113, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27765055

ABSTRACT

BACKGROUND: Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity. PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed for cancer therapy. However, few studies have explored their immunosuppressive effect. METHODS: The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated. RESULTS: Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting. Importantly, BEZ235 prevented naïve T cell activation and induced tolerance of alloreactive T cells, while maintaining an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly improved the survival and decreased the GvHD development in mice. CONCLUSIONS: These results support the use of PI3K inhibitors to control T cell responses and show the potential utility of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.


Subject(s)
Graft vs Host Disease/prevention & control , Lymphocyte Activation/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Animals , Cell Proliferation/drug effects , Imidazoles/pharmacology , Imidazoles/therapeutic use , Mice , Morpholines/pharmacology , Morpholines/therapeutic use , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Protein Kinase Inhibitors/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Signal Transduction/drug effects , T-Lymphocytes/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors
17.
Br J Haematol ; 173(5): 754-68, 2016 06.
Article in English | MEDLINE | ID: mdl-26914848

ABSTRACT

The mechanistic target of rapamycin (mTOR) pathway is crucial for the activation and function of T cells, which play an essential role in the development of graft-versus-host disease (GvHD). Despite its partial ability to block mTOR pathway, the mTORC1 inhibitor rapamycin has shown encouraging results in the control of GvHD. Therefore, we considered that simultaneous targeting of both mTORC1 and mTORC2 complexes could exert a more potent inhibition of T cell activation and, thus, could have utility in GvHD control. To assess this assumption, we have used the dual mTORC1/mTORC2 inhibitors CC214-1 and CC214-2. In vitro studies confirmed the superior ability of CC214-1 versus rapamycin to block mTORC1 and mTORC2 activity and to reduce T cell proliferation. Both drugs induced a similar decrease in Th1/Th2 cytokine secretion, but CC214-1 was more efficient in inhibiting naïve T cell activation and the expression of T-cell activation markers. In addition, CC214-1 induced specific tolerance against alloantigens, while preserving anti-cytomegalovirus response. Finally, in a mouse model of GvHD, the administration of CC214-2 significantly improved mice survival and decreased GvHD-induced damages. In conclusion, the current study shows, for the first time, the immunosuppressive ability of CC214-1 on T lymphocytes and illustrates the role of CC214-2 in the allogeneic transplantation setting as a possible GvHD prophylaxis agent.


Subject(s)
Graft vs Host Disease/prevention & control , Multiprotein Complexes/antagonists & inhibitors , T-Lymphocytes/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cells, Cultured , Female , Graft vs Host Disease/drug therapy , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Immune Tolerance/drug effects , Lymphocyte Activation/drug effects , Male , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pyrazines/pharmacology , Pyrazines/therapeutic use , T-Lymphocytes/drug effects
18.
Ecotoxicol Environ Saf ; 127: 51-60, 2016 May.
Article in English | MEDLINE | ID: mdl-26802562

ABSTRACT

In the present study, Xenopus laevis embryos were exposed to a range of perfluorooctane sulfonate (PFOS) concentrations (0, 0.5, 6, 12, 24, 48 and 96mg/L) for 96h in laboratorial conditions to establish toxicity along with possible gene expression changes. Mortality and deformities were monitored daily and head-tail length was measured at the end of the assay as an indicator of growth. At 24 and 96h post-exposure (hpe), the mRNA expression levels of the genetic markers involved in general stress responses (hsp70, hsp47, crh-a and ucn1), oxidative stress (cat.2 and sod), lipid metabolism (ppard) and apoptosis (tp53 and bax) were analyzed by RT-qPCR. Malformations were significantly higher in the embryos exposed to the highest PFOS concentration (41.8% to 56.4%) compared to controls (5.5%) at 48, 72 and 96hpe. Growth inhibition was observed in the embryos exposed to PFOS concentrations≥48mg/L. At 24 hpe, a statistically significant up-regulation of genes hsp70, hsp47, ppard, tp53 and bax in relation to controls was found. Similar responses were found for genes hsp70, hsp47, crh-a, ucn1, sod and ppard at 96 hpe. Alterations in the mRNA expression levels indicated both a stress response to PFOS exposure during X. laevis embryo development, and alterations in the regulation of oxidative stress, apoptosis, and differentiation. These molecular alterations were detected at an earlier exposure time or at lower concentrations than those producing developmental toxicity. Therefore, these sensitive warning signals could be used together with other biomarkers to supplement alternative methods (i.e. the frog embryo test) for developmental toxicity safety evaluations, and as tools in amphibian risk assessments for PFOS and its potential substitutes.


Subject(s)
Alkanesulfonic Acids/toxicity , Embryonic Development/drug effects , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Gene Expression Regulation, Developmental/drug effects , Oxidative Stress/drug effects , Xenopus laevis/embryology , Animals , Lipid Metabolism/drug effects , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Up-Regulation , Xenopus laevis/genetics
19.
Environ Toxicol Chem ; 35(6): 1428-35, 2016 06.
Article in English | MEDLINE | ID: mdl-26472276

ABSTRACT

The compound 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[γ]-2-benzopyrane (HHCB; galaxolide, Chemical Abstracts Service number 1222-05-5) is a synthetic musk used extensively as a fragrance in many consumer products and classified as an emerging pollutant. The ecotoxicological information available for HHCB addresses exposure via water, but this compound is frequently adsorbed into particulate matter. The goal of the present study was to assess the effects of dietary exposure to several environmentally relevant HHCB concentrations adsorbed in food during Xenopus laevis metamorphosis. The authors sought to determine if such exposure to this synthetic musk resulted in histological changes in the thyroid gland in conjunction with changes in development (staging, timing to metamorphosis), body weight, and length. Developmental acceleration on day 14, together with hypertrophy of the thyroid follicular epithelium in tadpoles, suggested a possible agonistic effect of HHCB, which would have been compensated after metamorphosis by regulatory mechanisms to maintain homeostasis. Further research into the potential thyroid-related mechanisms of action of HHCB should be conducted. Environ Toxicol Chem 2016;35:1428-1435. © 2015 SETAC.


Subject(s)
Benzopyrans/toxicity , Larva/drug effects , Metamorphosis, Biological/drug effects , Perfume/toxicity , Animal Feed , Animals , Body Weight/drug effects , Thyroid Gland/drug effects , Thyroid Gland/growth & development , Thyroid Gland/pathology , Toxicity Tests , Xenopus laevis
20.
Stem Cell Reports ; 5(4): 516-31, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26344907

ABSTRACT

The regulation of hematopoietic stem cells (HSCs) depends on the integration of the multiple signals received from the bone marrow niche. We show the relevance of the protein tyrosine phosphatase PTPN13 and ß-catenin as intracellular signaling molecules to control HSCs adhesiveness, cell cycling, and quiescence. Lethally irradiated mice transplanted with Lin(-) bone marrow cells in which PTPN13 or ß-catenin had been silenced showed a significant increase of long-term (LT) and short-term (ST) HSCs. A decrease in cycling cells was also found, together with an increase in quiescence. The decreased expression of PTPN13 or ß-catenin was linked to the upregulation of several genes coding for integrins and several cadherins, explaining the higher cell adhesiveness. Our data are consistent with the notion that the levels of PTPN13 and ß-catenin must be strictly regulated by extracellular signaling to regulate HSC attachment to the niche and the balance between proliferation and quiescence.


Subject(s)
Bone Marrow Cells/cytology , Hematopoietic Stem Cells/cytology , Lymphopoiesis , Protein Tyrosine Phosphatase, Non-Receptor Type 13/metabolism , Thrombopoiesis , beta Catenin/metabolism , Animals , Bone Marrow Cells/metabolism , Cell Adhesion , Cell Communication , Cell Line , Cells, Cultured , Gene Expression Regulation, Developmental , HEK293 Cells , Hematopoietic Stem Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , Protein Tyrosine Phosphatase, Non-Receptor Type 13/genetics , RNA Interference , RNA, Small Interfering/genetics , Stem Cell Niche , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...