Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 125(3): 1342-53, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11244114

ABSTRACT

Colinearity of a large region from barley (Hordeum vulgare) chromosome 5H and rice (Oryza sativa) chromosome 3 has been demonstrated by mapping of several common restriction fragment-length polymorphism clones on both regions. One of these clones, WG644, was hybridized to rice and barley bacterial artificial chromosome (BAC) libraries to select homologous clones. One BAC from each species with the largest overlapping segment was selected by fingerprinting and blot hybridization with three additional restriction fragment-length polymorphism clones. The complete barley BAC 635P2 and a 50-kb segment of the rice BAC 36I5 were completely sequenced. A comparison of the rice and barley DNA sequences revealed the presence of four conserved regions, containing four predicted genes. The four genes are in the same orientation in rice, but the second gene is in inverted orientation in barley. The fourth gene is duplicated in tandem in barley but not in rice. Comparison of the homeologous barley and rice sequences assisted the gene identification process and helped determine individual gene structures. General gene structure (exon number, size, and location) was largely conserved between rice and barley and to a lesser extent with homologous genes in Arabidopsis. Colinearity of these four genes is not conserved in Arabidopsis compared with the two grass species. Extensive similarity was not found between the rice and barley sequences other than within the exons of the structural genes, and short stretches of homology in the promoters and 3' untranslated regions. The larger distances between the first three genes in barley compared with rice are explained by the insertion of different transposable retroelements.


Subject(s)
Chromosomes, Artificial, Bacterial , Hordeum/genetics , Oryza/genetics , Arabidopsis/genetics , Genome, Plant , Molecular Sequence Data , Restriction Mapping , Sequence Analysis, DNA
2.
Proc Natl Acad Sci U S A ; 96(13): 7409-14, 1999 Jun 22.
Article in English | MEDLINE | ID: mdl-10377428

ABSTRACT

Orthologous adh regions of the sorghum and maize genomes were sequenced and analyzed. Nine known or candidate genes, including adh1, were found in a 225-kilobase (kb) maize sequence. In a 78-kb space of sorghum, the nine homologues of the maize genes were identified in a colinear order, plus five additional genes. The major fraction of DNA in maize, occupying 166 kb (74%), is represented by 22 long terminal repeat (LTR) retrotransposons. About 6% of the sequence belongs to 33 miniature inverted-repeat transposable elements (MITEs), remnants of DNA transposons, 4 simple sequence repeats, and low-copy-number DNAs of unknown origin. In contrast, no LTR retroelements were detected in the orthologous sorghum region. The unconserved sorghum DNA is composed of 20 putative MITEs, transposon-like elements, 5 simple sequence repeats, and low-copy-number DNAs of unknown origin. No MITEs were discovered in the 166 kb of DNA occupied by the maize LTR retrotransposons. In both species, MITEs were found in the space between genes and inside introns, indicating specific insertion and/or retention for these elements. Two adjacent sorghum genes, including one gene missing in maize, had colinear homologues on Arabidopsis chromosome IV, suggesting two rearrangements in the sorghum and three in the maize genome in comparison to a four-gene region of Arabidopsis. Hence, multiple small rearrangements may be present even in largely colinear genomic regions. These studies revealed a much higher degree of diversity at a microstructural level than predicted by genetic mapping studies for closely related grass species, as well as for comparisons of monocots and dicots.

SELECTION OF CITATIONS
SEARCH DETAIL
...