Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(3): 1326-1352, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36718960

ABSTRACT

Stress-induced tRNA fragmentation upon environmental insult is a conserved cellular process catalysed by endonucleolytic activities targeting mature tRNAs. The resulting tRNA-derived small RNAs (tsRNAs) have been implicated in various biological processes that impact cell-to-cell signalling, cell survival as well as gene expression regulation during embryonic development. However, how endonuclease-targeted tRNAs give rise to individual and potentially biologically active tsRNAs remains poorly understood. Here, we report on the in vivo identification of proteins associated with stress-induced tsRNAs-containing protein complexes, which, together with a 'tracer tRNA' assay, were used to uncover enzymatic activities that can bind and process specific endonuclease-targeted tRNAs in vitro. Among those, we identified conserved ATP-dependent RNA helicases which can robustly separate tRNAs with endonuclease-mediated 'nicks' in their anticodon loops. These findings shed light on the existence of cellular pathways dedicated to producing individual tsRNAs after stress-induced tRNA hydrolysis, which adds to our understanding as to how tRNA fragmentation and the resulting tsRNAs might exert physiological impact.


Subject(s)
RNA Helicases , RNA, Transfer , RNA Helicases/genetics , RNA, Transfer/metabolism , Anticodon , RNA
2.
Nucleic Acids Res ; 50(12): 6919-6937, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35699207

ABSTRACT

tRNA fragmentation is an evolutionarily conserved molecular phenomenon. tRNA-derived small RNAs (tsRNAs) have been associated with many cellular processes, including improved survival during stress conditions. Here, we have revisited accepted experimental paradigms for modeling oxidative stress resulting in tRNA fragmentation. Various cell culture models were exposed to oxidative stressors followed by determining cell viability, the production of specific tsRNAs and stress granule formation. These experiments revealed that exposure to stress parameters commonly used to induce tRNA fragmentation negatively affected cell viability after stress removal. Quantification of specific tsRNA species in cells responding to experimental stress and in cells that were transfected with synthetic tsRNAs indicated that neither physiological nor non-physiological copy numbers of tsRNAs induced the formation of stress granules. Furthermore, the increased presence of tsRNA species in culture medium collected from stressed cells indicated that cells suffering from experimental stress exposure gave rise to stable extracellular tsRNAs. These findings suggest a need to modify current experimental stress paradigms in order to allow separating the function of tRNA fragmentation during the acute stress response from tRNA fragmentation as a consequence of ongoing cell death, which will have major implications for the current perception of the biological function of stress-induced tsRNAs.


Subject(s)
Oxidative Stress , Stress Granules , Cell Death/genetics , Oxidative Stress/genetics , RNA, Transfer/genetics
3.
Pharmaceutics ; 12(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878127

ABSTRACT

Cancer therapy is still a huge challenge, as especially chemotherapy shows several drawbacks like low specificity to tumor cells, rapid elimination of drugs, high toxicity and lack of aqueous solubility. The combination of molecular imprinting technology with magnetic nanoparticles provides a new class of smart hybrids, i.e., magnetic molecularly imprinted polymers (MMIPs) to overcome limitations in current cancer therapy. The application of these complexes is gaining more interest in therapy, due to their favorable properties, namely, the ability to be guided and to generate slight hyperthermia with an appropriate external magnetic field, alongside the high selectivity and loading capacity of imprinted polymers toward a template molecule. In cancer therapy, using the MMIPs as smart-drug-delivery robots can be a promising alternative to conventional direct administered chemotherapy, aiming to enhance drug accumulation/penetration into the tumors while fewer side effects on the other organs. Overview: In this review, we state the necessity of further studies to translate the anticancer drug-delivery systems into clinical applications with high efficiency. This work relates to the latest state of MMIPs as smart-drug-delivery systems aiming to be used in chemotherapy. The application of computational modeling toward selecting the optimum imprinting interaction partners is stated. The preparation methods employed in these works are summarized and their attainment in drug-loading capacity, release behavior and cytotoxicity toward cancer cells in the manner of in vitro and in vivo studies are stated. As an essential issue toward the development of a body-friendly system, the biocompatibility and toxicity of the developed drug-delivery systems are discussed. We conclude with the promising perspectives in this emerging field. Areas covered: Last ten years of publications (till June 2020) in magnetic molecularly imprinted polymeric nanoparticles for application as smart-drug-delivery systems in chemotherapy.

4.
Amino Acids ; 52(4): 543-553, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32236698

ABSTRACT

The aim of the current study was to investigate whether doublecortin (DCX), insulin-like growth factor receptor 1 (IGF-1R) and metabotropic glutamate receptor 5 (mGluR5) levels are indeed modified in the aging rat hippocampal individual subareas (rather than total hippocampal tissue as in previous reports) at the protein and mRNA level and whether the methylation status contributes to these changes. Since the aging population is not homogeneous in terms of spatial memory performance, we examined whether changes in DCX, IGF-1R and mGluR5 are linked to cognitive aging. Aged (22 months) male Sprague Dawley rats were trained in the hole-board, a spatial memory task, and were subdivided according to performance to aged impaired and aged unimpaired groups. Age- and memory performance-dependent changes in mRNA steady-state levels, protein levels and DNA methylation status of DCX, IGF-1R and mGluR5 were evaluated by RT-PCR, immunoblotting and bisulfite pyrosequencing. Extending previous findings, we detected decreased DCX protein and mRNA levels in dentate gyrus (DG) of aged animals. IGF-1 signaling is a key event and herein we show that mRNA levels for IGF-1R were unchanged although reduced at the protein level. This finding may simply reflect that these protein levels are regulated at the level of protein synthesis as well as protein degradation. We provide evidence that promoter methylation is not involved in regulation of mRNA and protein levels of DCX, IGF-1R and mGluR5 during aging. Moreover, there was no significant difference between aged rats with impaired and aged rats with unimpaired memory at the protein and mRNA level. Findings propose that changes in the abovementioned protein levels may not be relevant for performance in the spatial memory task used in aged rats.


Subject(s)
Hippocampus/metabolism , Microtubule-Associated Proteins/deficiency , Neuropeptides/deficiency , Receptor, IGF Type 1/deficiency , Aging/metabolism , Animals , Cognition , DNA Methylation , Doublecortin Domain Proteins , Doublecortin Protein , Male , Microtubule-Associated Proteins/analysis , Microtubule-Associated Proteins/genetics , Neuropeptides/analysis , Neuropeptides/genetics , Promoter Regions, Genetic , Rats , Rats, Sprague-Dawley , Receptor, IGF Type 1/analysis , Receptor, IGF Type 1/genetics , Receptor, Metabotropic Glutamate 5/analysis , Receptor, Metabotropic Glutamate 5/genetics , Receptor, Metabotropic Glutamate 5/metabolism , Spatial Memory
5.
Drug Dev Ind Pharm ; 44(3): 421-431, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29098888

ABSTRACT

Plasticizers play a crucial role in various process of microencapsulation. In this study, the effect of incorporation of plasticizer in process of emulsion solvent evaporation was investigated on properties of ethyl cellulose (EC) microcapsules containing propranolol hydrochloride. The effect of plasticizer type and concentration were investigated on characteristics of microcapsules prepared from different viscosity grades of EC. Product yield, encapsulation efficiency, mean particle size, shape, surface characteristics, solid state of drug, and drug release profiles were evaluated. Product yield and encapsulation efficiency were not dependent on plasticizer type and concentration. However, encapsulation efficiency decreased with increase in EC viscosity grade in the most of the cases. The mean particle size was in the range of 724-797 µm and was not dependent on plasticizer type. Microcapsules formed in the presence of PEG had a very smooth surface with few pores. XRD and DSC studies revealed a reduction of drug crystallinity after microencapsulation especially in presence of PEG. The results showed that the presence of TEC and DEP with different concentrations had no marked effect on drug release from microcapsules containing different viscosity grades of EC. This was not the case when PEG was used, and despite its water solubility it reduced the drug release rate noticeably. The reduction in the drug release in the presence of PEG was concentration-dependent. The use of PEG as a plasticizer in process of emulsion solvent evaporation highly improved the EC microcapsule structure and retarded the drug release rate and therefore is recommended.


Subject(s)
Capsules/chemistry , Cellulose/analogs & derivatives , Citrates/chemistry , Emulsions/chemistry , Phthalic Acids/chemistry , Polyethylene Glycols/chemistry , Propranolol/chemistry , Cellulose/chemistry , Drug Compounding/methods , Particle Size , Plasticizers/chemistry , Solubility , Solvents/chemistry , Viscosity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...