Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(9): 2351-2363, 2023 05.
Article in English | MEDLINE | ID: mdl-36785954

ABSTRACT

Wolbachia are among the most prevalent and widespread endosymbiotic bacteria on Earth. Wolbachia's success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch between host species. Whilst much progress has been made in elucidating their induced phenotypes, our understanding of Wolbachia host-shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia's routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well suited to studying host shifts. Using Illumina multitarget amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains. We then fitted a generalized additive mixed model to our data to estimate the influence of host phylogeny and the geographical distribution on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.


Subject(s)
Hemiptera , Wolbachia , Animals , Hemiptera/microbiology , Insecta/genetics , Phylogeny , Symbiosis/genetics , Wasps/genetics , Wolbachia/genetics
2.
Environ Microbiol ; 24(3): 1326-1339, 2022 03.
Article in English | MEDLINE | ID: mdl-34792280

ABSTRACT

Wolbachia is one of the most successful endosymbiotic bacteria of arthropods. Known as the 'master of manipulation', Wolbachia can induce a wide range of phenotypes in its host that can have far-reaching ecological and evolutionary consequences and may be exploited for disease and pest control. However, our knowledge of Wolbachia's distribution and the infection rate is unevenly distributed across arthropod groups such as scale insects. We fitted a distribution of within-species prevalence of Wolbachia to our data and compared it to distributions fitted to an up-to-date dataset compiled from surveys across all arthropods. The estimated distribution parameters indicate a Wolbachia infection frequency of 43.6% (at a 10% prevalence threshold) in scale insects. Prevalence of Wolbachia in scale insects follows a distribution similar to exponential decline (most species are predicted to have low prevalence infections), in contrast to the U-shaped distribution estimated for other taxa (most species have a very low or very high prevalence). We observed no significant associations between Wolbachia infection and scale insect traits. Finally, we screened for Wolbachia in scale insect's ecological associates. We found a positive correlation between Wolbachia infection in scale insects and their ant associates, pointing to a possible route of horizontal transfer of Wolbachia.


Subject(s)
Ants , Arthropods , Hemiptera , Wolbachia , Animals , Biological Evolution , Symbiosis , Wolbachia/genetics
3.
Sci Rep ; 11(1): 9664, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33958611

ABSTRACT

The alfalfa weevil Hypera postica, native to the Western Palearctic, is an invasive legume pest with two divergent mitochondrial clades in its invading regions, the Western clade and the Eastern/Egyptian clade. However, knowledge regarding the native populations is limited. The Western clade is infected with the endosymbiotic bacteria Wolbachia that cause cytoplasmic incompatibility in host weevils. Our aim was to elucidate the spatial genetic structure of this insect and the effect of Wolbachia on its population diversity. We analyzed two mitochondrial and two nuclear genes of the weevil from its native ranges. The Western clade was distributed in western/central Europe, whereas the Eastern/Egyptian clade was distributed from the Mediterranean basin to central Asia. Intermediate mitotypes were found from the Balkans to central Asia. Most Western clade individuals in western Europe were infected with an identical Wolbachia strain. Mitochondrial genetic diversity of the infected individuals was minimal. The infected clades demonstrated a higher nonsynonymous/synonymous substitution rate ratio than the uninfected clades, suggesting a higher fixation of nonsynonymous mutations due to a selective sweep by Wolbachia. Trans-Mediterranean and within-European dispersal routes were supported. We suggest that the ancestral populations diversified by geographic isolation due to glaciations and that the diversity was reduced in the west by a recent Wolbachia-driven sweep(s). The intermediate clade exhibited a body size and host plant that differed from the other clades. Pros and cons of the possible use of infected-clade males to control uninfected populations are discussed.


Subject(s)
Weevils/microbiology , Wolbachia , Animals , Asia , Body Size , Europe , Female , Genetic Variation/genetics , Haplotypes/genetics , Introduced Species , Male , Mitochondria/genetics , Phylogeny , Phylogeography , Weevils/genetics
4.
Biol Rev Camb Philos Soc ; 96(2): 433-453, 2021 04.
Article in English | MEDLINE | ID: mdl-33128345

ABSTRACT

Wolbachia is one of the most abundant endosymbionts on earth, with a wide distribution especially in arthropods. Effective maternal transmission and the induction of various phenotypes in their hosts are two key features of this bacterium. Here, we review our current understanding of another central aspect of Wolbachia's success: their ability to switch from one host species to another. We build on the proposal that Wolbachia host shifts occur in four main steps: (i) physical transfer to a new species; (ii) proliferation within that host; (iii) successful maternal transmission; and (iv) spread within the host species. Host shift can fail at each of these steps, and the likelihood of ultimate success is influenced by many factors. Some stem from traits of Wolbachia (different strains have different abilities for host switching), others on host features such as genetic resemblance (e.g. host shifting is likely to be easier between closely related species), ecological connections (the donor and recipient host need to interact), or the resident microbiota. Host shifts have enabled Wolbachia to reach its enormous current incidence and global distribution among arthropods in an epidemiological process shaped by loss and acquisition events across host species. The ability of Wolbachia to transfer between species also forms the basis of ongoing endeavours to control pests and disease vectors, following artificial introduction into uninfected hosts such as mosquitoes. Throughout, we emphasise the many knowledge gaps in our understanding of Wolbachia host shifts, and question the effectiveness of current methodology to detect these events. We conclude by discussing an apparent paradox: how can Wolbachia maintain its ability to undergo host shifts given that its biology seems dominated by vertical transmission?


Subject(s)
Arthropods , Wolbachia , Animals , Biological Evolution , Mosquito Vectors , Symbiosis
5.
Ecol Evol ; 9(17): 9546-9563, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31534674

ABSTRACT

The alfalfa weevil (Hypera postica) is a well-known example of a worldwide-distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.

6.
Mitochondrial DNA B Resour ; 4(2): 4069-4070, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-33366322

ABSTRACT

Acropteris iphiata belongs to the family Uraniidae in the superfamily Geometroidea (Lepidoptera). We sequenced 15,346-bp long complete mitochondrial genome (mitogenome) of the species, which consists of a typical set of genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes) and one major non-coding A + T-rich region. The A. iphiata mitogenome harbored the gene order tRNAMet, tRNAIle, and tRNAGln between the A + T-rich region and ND2 that is found in most lepidopteran mitogenomes. Bayesian inference (BI) and maximum likelihood (ML) phylogeny, using 13 protein-coding genes (PCGs) and 2 rRNAs showed that A. iphiata was placed as a sister to Geometridae with the highest nodal support (Bayesian posterior probabilities for BI = 1.00 and Bootstrap support for ML = 100).

SELECTION OF CITATIONS
SEARCH DETAIL
...