Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847789

ABSTRACT

Fungal keratitis (FK) is a severe ocular condition resulting from corneal infection that is prevalent in tropical countries, particularly in developing regions of Asia and Africa. Factors like corneal lens misuse, inappropriate steroid use, and diagnostic challenges have provoked the epidemic. FK causes significant vision impairment, scarring, and ocular deformities. Accurate pathological diagnosis is crucial for effective therapeutic intervention. Topical antifungal therapy with surface healing medications proves effective in preventing fungal-borne ulcers. Managing FK requires a comprehensive understanding of fungal pathogenesis, guiding formulation strategies and preventive measures to curb global ocular blindness. This review provides in-depth insights into FK, covering etiology, epidemiology, pathogenesis, therapeutic interventions, antifungal resistance, limitations, prevention, and future perspectives on ocular surface disease management.

2.
J Mass Spectrom ; 59(6): e5031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726684

ABSTRACT

Managing ocular microbial infections typically requires pharmacotherapy using antibiotic eye drops, such as moxifloxacin hydrochloride (MFX), combined with an antifungal agent like amphotericin B (AB). We carried out and validated an LC-MS/MS assay to quantify these compounds in rabbit tear fluid in order to look into the pharmacokinetics of these two drugs. We employed a protein precipitation technique for the extraction of drugs under examination. A Waters Symmetry C18 column was used to separate the analytes and internal standard. The composition of the mobile phase was like (A) 0.1% v/v formic acid in water and (B) methanol. The detection of MFX and AB was accomplished through the utilization of positive ion electrospray ionization under multiple reaction monitoring mode. The linearity curves for both analytes exhibited an acceptable trendline across a concentration range of 2.34-300 ng/mL for MFX and 7.81-1000 ng/mL for AB in surrogate rabbit tear fluid. The lower limit of quantitation for MFX was 2.34 ng/mL, while for AB, it was 7.81 ng/mL. The approach was strictly validated, encompassing tests of selectivity, linearity (with r2 > 0.99), precision, accuracy, matrix effects, and stability. Consequently, we employed this method to evaluate the pharmacokinetics profiles of MFX and AB in rabbit tear fluid following single topical doses.


Subject(s)
Moxifloxacin , Tandem Mass Spectrometry , Tears , Rabbits , Animals , Tandem Mass Spectrometry/methods , Tears/chemistry , Moxifloxacin/pharmacokinetics , Moxifloxacin/analysis , Reproducibility of Results , Amphotericin B/pharmacokinetics , Amphotericin B/analysis , Limit of Detection , Anti-Infective Agents/pharmacokinetics , Anti-Infective Agents/analysis , Chromatography, Liquid/methods , Ophthalmic Solutions/pharmacokinetics , Linear Models , Liquid Chromatography-Mass Spectrometry
3.
Article in English | MEDLINE | ID: mdl-38654153

ABSTRACT

Ocular disorders can lead to serious sight impairment and irreversible blindness. Generally simple topical and systemic treatments are recommended for treating these vision-threatening illnesses. The distinctive architecture of the eye complicates ocular drug delivery. The ophthalmic emulsion formulations have been found to increase bioavailability in the eye by prolonging residence time and improving permeability through the cornea. Therefore, this study highlights ophthalmic emulsions meant for both the anterior and posterior parts of the eye while examining a wide range of ocular disorders that affect individuals globally. This review presents, in brief, recent emulsion-based patented innovations, clinical trials, and marketed emulsion formulations for ocular drug delivery, which are strengthening development of the new ophthalmic drug products for managing different ocular diseases and disorders.

4.
Article in English | MEDLINE | ID: mdl-38603587

ABSTRACT

Purpose: Glaucoma is a complex degenerative optic neuropathy characterized by loss of retinal ganglion cells (RGCs) leading to irreversible vision loss and blindness. Solanum nigrum has been used for decades in traditional medicine system. However, no extensive studies were reported on its antiglaucoma properties. Therefore, this study was designed to investigate the neuroprotective effects of S. nigrum extract on RGC against glaucoma rat model. Methods: High performance liquid chromatography and liquid chromatography tandem mass spectrometry was used to analyze the phytochemical profile of aqueous extract of S. nigrum (AESN). In vitro, {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} (MTT) and H2DCFDA assays were used to determine cell viability and reactive oxygen species (ROS) production in Statens Seruminstitut Rabbit Cornea cells. In vivo, AESN was orally administered to carbomer-induced rats for 4 weeks. Intraocular pressure, antioxidant levels, and electrolytes were determined. Histopathological and immunohistochemical analysis was carried out to evaluate the neurodegeneration of RGC. Results: MTT assay showed AESN exhibited greater cell viability and minimal ROS production at 10 µg/mL. Slit lamp and funduscopy confirmed glaucomatous changes in carbomer-induced rats. Administration of AESN showed minimal peripheral corneal vascularization and restored histopathological alterations such as minimal loss of corneal epithelium and moderate narrowing of the iridocorneal angle. Immunohistochemistry analysis showed increased expression of positive BRN3A cells and decreased matrix metalloproteinase (MMP)-9 activation in retina and cornea, whereas western blot analysis revealed downregulation of extracellular matrix proteins (COL-1 and MMP-9) in AESN-treated rats compared with the diseased group rats. Conclusions: AESN protects RGC loss through remodeling of MMPs and, therefore, can be used for the development of novel neurotherapeutics for the treatment of glaucoma.

5.
Biopolymers ; : e23578, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38577865

ABSTRACT

Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.

6.
Chem Biodivers ; 21(3): e202301389, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38299764

ABSTRACT

Pirfenidone, initially indicated for lung fibrosis, has gone beyond its original purpose, and shown promise in eye care. This detailed review tracks its evolution from lung treatment to aiding eye healing as evidenced by published literature. Pirfenidone's multifaceted attributes extend to mitigating corneal fibrosis, inflammation, and trauma. Through rigorous investigations, its efficacy emerges in diabetic retinopathy, macular degeneration, and postoperative glaucoma interventions. As an unheralded protagonist, pirfenidone reshapes ocular care paradigms, inviting renewed research opportunities.


Subject(s)
Pyridones , Wound Healing , Pyridones/pharmacology , Pyridones/therapeutic use
7.
J Ocul Pharmacol Ther ; 40(1): 13-33, 2024.
Article in English | MEDLINE | ID: mdl-37733327

ABSTRACT

Purpose: Diabetic retinopathy (DR) is a microvascular retinal disease associated with chronic diabetes mellitus, characterized by the damage of blood vessels in the eye. It is projected to become the leading cause of blindness, given the increasing burden of the diabetic population worldwide. The diagnosis and management of DR pose significant challenges for physicians because of the involvement of multiple biochemical pathways and the complexity of ocular tissues. This review aims to provide a comprehensive understanding of the molecular pathways implicated in the pathogenesis of DR, including the polyo pathway, hexosamine pathway, protein kinase C (PKC), JAK/STAT signaling pathways, and the renin-angiotensin system (RAS). Methods: Academic databases such as PubMed, Scopus, Google Scholar and Web of Science was systematically searched using a carefully constructed search strategy incorporating keywords like "Diabetic Retinopathy," "Molecular Pathways," "Pharmacological Treatments," and "Clinical Trials" to identify relevant literature for the comprehensive review. Results: In addition to activating other inflammatory cascades, these pathways contribute to the generation of oxidative stress within the retina. Furthermore, it aims to explore the existing pharmacotherapy options available for the treatment of DR. In addition to conventional pharmacological therapies such as corticosteroids, antivascular endothelial growth factors, and nonsteroidal anti-inflammatory drugs (NSAIDs), this review highlights the potential of repurposed drugs, phyto-pharmaceuticals, and novel pipeline drugs currently undergoing various stages of clinical trials. Conclusion: Overall, this review serves as a technical exploration of the complex nature of DR, highlighting both established and emerging molecular pathways implicated in its pathogenesis. Furthermore, it delves into the available pharmacological treatments, as well as the promising repurposed drugs, phyto-pharmaceuticals, and novel drugs currently being evaluated in clinical trials, with a focus on their specific mechanisms of action.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/etiology , Diabetic Retinopathy/pathology , Retina/pathology , Adrenal Cortex Hormones/therapeutic use , Oxidative Stress , Pharmaceutical Preparations , Diabetes Mellitus/drug therapy
8.
Xenobiotica ; 53(6-7): 484-497, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37787761

ABSTRACT

1. The current investigation was to develop and validate the LC-MS/MS method in order to analyse the various pharmacokinetic parameters of S019-0385. A sensitive, selective, and robust LC-MS/MS approach was established and validated for measuring S019-0385 in female mice plasma and tissue, using optimal multiple reaction monitoring (MRM) transition m/z 488.25/329.12 on positive mode. On a Waters Symmetry Shield C18 column, the analyte was separated using acetonitrile and deionised water with formic acid within 6 min at 0.7 mL/min. Linearity (R2 ≥ 0.99) was observed across 0.195-100 ng/mL concentration range using linear least-squares regression.2. Blood-to-plasma ratio and plasma protein drug binding (%) in mice and human was assessed and found to be less than 1 and >83%, respectively. Absolute bioavailability (%F) of S019-0385 in female Swiss mice was exhibited to be 6.90%. Percent dose excreted S019-0385 in unchanged form through urine and faecal was found to be less than 2% and 0.5%, respectively.3. Following oral administration at 5 mg/kg, the concentration of S019-0385 in tissue distribution was found to be in the order of C small intestine > C bone > C lung > C spleen > C kidney > C liver > C heart > C brain.


Subject(s)
Tandem Mass Spectrometry , Humans , Mice , Female , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Tissue Distribution , Biological Availability , Feces , Reproducibility of Results
9.
Biomater Adv ; 154: 213663, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37865027

ABSTRACT

The current work is focused on developing mannose-coated PLGA nanoparticles for delivering Donepezil and Memantine in one dosage form. The formulated nanoparticles were prepared using a simple emulsification technique. The final coated NPs exhibited 179.4 nm size and - 33.1 mV zeta potential and spherical shape. The concentration of IN-administrated MEM and DPZ mannose coated NPs in brain was ~573 and 207 ng/mL respectively. This amount accounts for 3 times more in comparison to uncoated NPs administered via intranasal and peroral routes. The plasma concentration of coated NPs administered via the intranasal route was various times less in comparison to other groups. In the field of pharmacodynamics, the administration of coated NPs via the IN route has shown superior efficacy in comparison to other groups in various investigations involving neurobehavioral assessments, gene expression analyses and biochemical estimations. The findings indicate that the IN route may be a potential avenue for delivering therapeutic agents using nanoparticles to treat neurological illnesses. This approach shows promise as a viable alternative to traditional dose forms and administration methods.


Subject(s)
Memantine , Nanoparticles , Donepezil , Memantine/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Mannose , Nanoparticles/chemistry
10.
AAPS PharmSciTech ; 24(8): 217, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891392

ABSTRACT

The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.


Subject(s)
Eye Diseases , Macular Degeneration , Humans , Delayed-Action Preparations/therapeutic use , Eye , Drug Delivery Systems , Liposomes/therapeutic use , Macular Degeneration/drug therapy , Eye Diseases/drug therapy
11.
Eur J Med Chem ; 261: 115863, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37837672

ABSTRACT

In pursuance of our efforts to expand the scope of novel antileishmanial entities, a series of thirty-five quinoline-piperazine/pyrrolidine, and other heterocyclic amine derivatives were synthesized via a molecular hybridization approach and examined against intracellular amastigotes of luciferase-expressing Leishmania donovani. The preliminary in vitro screening suggests that twelve compounds in the series exhibited better inhibition against amastigote form with good IC50 values ranging from 2.09 to 8.89 µM and lesser cytotoxicity in contrast to the standard drug miltefosine (IC50 9.25 ± 0.17 µM). Based on the satisfactory selectivity index (SI), two compounds were tested for in vivo leishmanicidal efficacy against Leishmania donovani/golden hamster model. Compounds 33 and 46 have shown significant inhibition of 56.32%, and 49.29%, respectively, in vivo screening at a daily dose of 50 mg/kg for 5 days. The pharmacokinetic results confirmed that 33 and 46 have satisfactory IP exposure with adequate parameters. Collectively, Compound 33 was identified as the most significant potential lead that could be employed as a prototype for future optimizations.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Quinolines , Piperazine , Quinolines/pharmacology
12.
Rapid Commun Mass Spectrom ; 37(20): e9615, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37706431

ABSTRACT

RATIONALE: Hesperidin (HES) is a well-known citrus bioflavonoid phyto-nutraceutical agent with polypharmacological properties. After 2019, HES was widely used for prophylaxis and COVID-19 treatment. Moreover, it is commonly prescribed for treating varicose veins and other diseases in routine clinical practice. Pharmaceutical impurities and degradation products (DP) impact the drug's quality and safety and thus its effectiveness. Therefore, forced degradation studies help study drug stability, degradation mechanisms, and their DPs. This study was performed because stress stability studies using detailed structural characterization of hesperidin are currently unavailable in the literature. METHODS: In the HES enrichment method crude HES was converted to its pure form (98% purity) using column chromatography and then subjected to forced degradation under acid, base, and neutral hydrolyses followed by oxidative, reductive, photolytic, and thermal stress testing (International Conference on Harmonization guidelines). The stability-indicating analytical method (SIAM) was developed to determine DPs using reversed-phase high-performance liquid chromatography (C18 column with methanol and 0.1% v/v acetic acid in deionized water [70:30, v/v] at 284 nm). Further, structural characterization of DPs was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. In addition, in silico toxicity predictions were performed using pKCSM and DataWarior freeware. RESULTS: HES was found to be susceptible to acidic and basic hydrolytic conditions and yielded three DPs in each, which were detected using designed SIAM. Of six DPs, three were pseudo-DPs (short lived), and the remaining were characterized using LC-MS/MS and NMR spectroscopy. The tentative mechanism of the formation of proposed DPs was explained. The proposed DPs were found inactive from in silico toxicity predictions. CONCLUSIONS: Hesperidin was labile under acidic and basic stress conditions. The potential DPs were characterized using LC-ESI-MS/MS and NMR spectral techniques. The proposed mechanism of formation was hypothesized. In addition, to identify and characterize the DPs, a SIAM, which has broad biomedical applications, was successfully developed.


Subject(s)
COVID-19 , Hesperidin , Humans , Chromatography, Liquid , COVID-19 Drug Treatment , Tandem Mass Spectrometry
13.
Ther Deliv ; 14(7): 419-441, 2023 07.
Article in English | MEDLINE | ID: mdl-37535389

ABSTRACT

Ophthalmic disease can cause permanent loss of vision and blindness. Easy-to-administer topical and systemic treatments are preferred for treating sight-threatening disorders. Typical ocular anatomy makes topical and systemic ophthalmic drug delivery challenging. Various novel nano-drug delivery approaches are developed to attain the desired bioavailability in the eye by increasing residence time and improved permeability across the cornea. The review focuses on novel methods that are biocompatible, safe and highly therapeutic. Novelty in nanocarrier design and modification can overcome their drawbacks and make them potential drug carriers for eye disorders in both the anterior and posterior eye segments. This review briefly discussed technologies, patented developments, and clinical trial data to support nanocarriers' use in ocular drug delivery.


Subject(s)
Eye Diseases , Nanoparticles , Humans , Eye , Drug Delivery Systems , Drug Carriers , Eye Diseases/drug therapy , Administration, Ophthalmic , Ophthalmic Solutions
14.
Curr Drug Metab ; 24(8): 587-598, 2023.
Article in English | MEDLINE | ID: mdl-37592800

ABSTRACT

BACKGROUND: Chebulinic acid (CA) is an active constituent of Terminalia chebula fruits with therapeutic potential against multiple metabolic diseases, including dementia, benign prostate hyperplasia, and osteoporosis. OBJECTIVE: The present work intends to explore the preclinical pharmacokinetics, including the absolute bioavailability of CA and its influence on the gene expression of cytochrome P450 enzymes in the liver. METHODS: Quantifying CA and probe drugs in vitro samples and preclinical serum samples of male SD rats were performed using LC-MS/MS. The influence of CA on the hepatic CYPs and their gene expression was analyzed in rat liver by quantitative real-time polymerase chain reaction. RESULTS: The plasma protein binding was found to be 84.81 ± 7.70 and 96.34 ± 3.12, blood-to-plasma ratio of 0.62 ± 0.16 and 0.80 ± 0.23 at 1 µM and 10 µM concentrations, respectively. Again, the absolute oral bioavailability of CA at 100 mg/kg was found to be 37.56 ± 7.3%. The in-vivo pharmacokinetic profile of probe drugs revealed CA to have significant inducing effects on CYP1A2, 2C11, 2D2, and 2E1 after 14 days, which correlates to both in-vitro rat microsomal data and gene expression results. CONCLUSION: Altogether, pharmacokinetic parameters reveal CA to have an affinity to distribute across different extravascular tissues and induce rat liver CYP enzymes.

15.
Curr Pharm Des ; 29(20): 1602-1616, 2023.
Article in English | MEDLINE | ID: mdl-37424342

ABSTRACT

Despite significant advancements in CNS research, CNS illnesses are the most important and serious cause of mental disability worldwide. These facts show a tremendous unmet demand for effective CNS medications and pharmacotherapy since it accounts for more hospitalizations and extended care than practically all other disorders combined. The site-targeted kinetics of the brain and, pharmacodynamics of CNS effects are determined/regulated by various mechanisms after the dose, including blood-brain barrier (BBB) transport and many other processes. These processes are condition-dependent in terms of their rate and extent because they are dynamically controlled. For effective therapy, drugs should access the CNS "at the right place, time, and concentration". Details on inter-species and inter-condition variances are required to translate target site pharmacokinetics and associated CNS effects between species and illness states, improving CNS therapeutics and drug development. The present review encircles a short discussion about the barriers that affect effective CNS treatment and precisely focuses on the pharmacokinetics aspects of efficient CNS therapeutics.


Subject(s)
Blood-Brain Barrier , Brain , Humans , Blood-Brain Barrier/metabolism , Drug Discovery , Central Nervous System Agents/pharmacology , Biological Transport , Drug Delivery Systems
16.
J Pharm Biomed Anal ; 234: 115484, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37453143

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common endocrine disorder that causes reproductive hormones imbalance, missed periods, infertility and distributed steroidogenesis. Reportedly, during PCOS, the endogenous levels of P4 (Progesterone), 17OHP4 (17-α hydroxy progesterone), and T4 (Testosterone) were significantly altered. Thus, quantification of steroid biomarkers involved in the steroidogenesis pathway of PCOS, such as P4, 17OHP4, and T4, holds significant importance. One important drawback of current methods is steroid metabolome traceability. Without adequate traceability, the findings of these techniques will be less reliable for identifying P4, 17OHP4, and T4. These methods also need a high sample size, especially for the most important biomarker that initiates steroidogenesis. To address these challenges, we require a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for steroid biomarker analysis. Herein the present work, using validated LC-MS/MS, PCOS biomarkers were measured and compared between normal control rats and PCOS-induced rats before and after analyte administration. The experiment utilized an isocratic separation method employing an analytical C18 column. The mobile phase consisted of acetonitrile (ACN) and aqueous 0.1% formic acid (FA) in a ratio of 90:10 (v/v). The plasma samples were processed with protein precipitation (PPT) followed by the liquid-liquid extraction (LLE) method. The lower limit of quantification (LLOQ) was 0.5 ng/mL in plasma. According to USFDA criteria, the method's systematic validation took into account linearity (r2 > 0.99), accuracy and precision of intra- and inter-batch measurements, stability, biomarker recovery (60-85%) and matrix effect (<± 15%), all of which were determined to be within range ( ± 15%). The pharmacokinetic data showed that, as compared to normal rats, PCOS-induced animals had significantly higher Cmax values for 17OHP4 and T4 (∼2 fold), while lower Cmax values for P4 (∼2 fold). The present work is novel and provides scientific information to explore systematic processes involved in steroidogenesis and boost clinical applicability for PCOS therapy.


Subject(s)
Polycystic Ovary Syndrome , Humans , Female , Animals , Rats , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Progesterone , Steroids , Testosterone , Biomarkers , Reproducibility of Results
17.
Mol Pharm ; 20(9): 4714-4728, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37523676

ABSTRACT

This work focuses on developing nanoemulsions using a low-energy emulsification method for the codelivery of donepezil and memantine in one dosage form intended to be administered via the intranasal route for enhanced brain delivery. The nanoemulsion formulation was prepared using a low emulsification technique and characterized using various microscopy and nasal ciliotoxicity studies. The safe nanoemulsion was intended for preclinical pharmacokinetics with brain distribution and pharmacodynamics in a scopolamine-induced murine model. The formulated nanoemulsion was 16 nm in size, with a zeta potential of -7.22 mV, and exhibited a spherical shape. The brain concentration of IN-administered NE for DPZ and MEM was ∼678 and 249 ng/mL after 15 min. This concentration is more than 2 times higher in amount when compared with NE administered via PO, free drug solution administered via IN and PO route both. However, the plasma concentration of IN-administered NE for DPZ and MEM was ∼3 and 28 ng/mL after 15 min. In pharmacodynamic studies, the efficacy of NE administered via the IN route was higher when compared with other groups in neurobehavioral, biochemical estimation, and gene expression studies. The results suggest that the IN route can be explored in the future for the delivery of actives via nanocolloidal carriers in the brain for neurological disorders and can serve as promising alternatives for conventional dosage forms and routes.


Subject(s)
Memantine , Nanoparticles , Mice , Animals , Donepezil , Administration, Intranasal , Brain/metabolism , Scopolamine , Emulsions/metabolism , Nanoparticles/chemistry , Particle Size
18.
Bioanalysis ; 15(13): 711-725, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37354099

ABSTRACT

Aim: To study the preclinical pharmacokinetics of 4-hydroxy isoleucine (4-HIL) targeted for polycystic ovary syndrome. Methodology: The quantitative bioanalysis of 4-HIL in different biological matrices in female Sprage-Dawley rats using LC-MS/MS. Results: At 50 mg/kg, 4-HIL had 56.8% absolute oral bioavailability. It was quickly absorbed and distributed in various tissues in order of small intestine > kidney > ovary > spleen > lung > liver > heart > brain after oral administration. Moreover, 11.07% of 4-HIL was recovered in urine and feces within 72 h. Conclusion: 4-HIL levels in vital organs were found safe, as per tissue distribution results. Hence, 4-HIL could be used as promising therapeutics for management of polycystic ovary syndrome.


Subject(s)
Isoleucine , Polycystic Ovary Syndrome , Rats , Female , Animals , Humans , Chromatography, Liquid , Rats, Sprague-Dawley , Polycystic Ovary Syndrome/drug therapy , Tandem Mass Spectrometry/methods , Administration, Oral
19.
Anal Methods ; 15(18): 2234-2243, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37128739

ABSTRACT

Dynamic emergence of microbial keratitis (MK) requires a promising therapeutic arsenal of antifungal and antibacterial agents like voriconazole (VCZ) and moxifloxacin (MOXI), respectively. Parallelly, another paradigm of MK associated with ulcerative wounds cannot be left unnoticed and requires antifibrotic remedy (pirfenidone, PIR) as an authalic antimicrobial to retain the primordial vision. For designing an effective clinical cure, a combination of these three agents is required at a therapeutic dosage regimen. Following the quest, we have developed a simple and sensitive LC-MS/MS bioanalytical method for simultaneous quantification of VCZ, MOXI, and PIR in rabbit lacrimal fluid. The method was validated as per US-FDA norms using ketoconazole as an internal standard for linearity, accuracy-precision, matrix effect, dilution integrity, selectivity, and stability. The five minutes chromatographic set-up includes isocratic elution with a C18 column using MeOH (80%, v/v) and ultrapure water containing 0.2% formic acid (20%, v/v), respectively. The MS-based analyte detection was achieved in ESI+ multiple reaction monitoring mode. The sample extraction was performed using the protein precipitation method with minimal sample size. The validated methodology was employed to determine the ocular pharmacokinetics profile of marketed formulations containing VCZ, MOXI, and PIR in rabbit lacrimal matrix.


Subject(s)
Tandem Mass Spectrometry , Animals , Rabbits , Chromatography, Liquid/methods , Moxifloxacin , Voriconazole/pharmacology , Tandem Mass Spectrometry/methods , Reproducibility of Results
20.
Biomed Chromatogr ; 37(9): e5681, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37153940

ABSTRACT

A novel, quick and precise RP-UHPLC analytical method for the simultaneous determination of moxifloxacin (MFX), voriconazole (VCZ) and pirfenidone (PIR) was developed and validated according to the International Conference on Harmonization guidelines using a QbD-driven response surface Box-Behnken design. The developed method was validated considering the selectivity, sensitivity, linearity, accuracy-precision, robustness, stability, limit of detection and limit of quantification, respectively. Resolution between MFX, VCZ and PIR was achieved using a gradient elution protocol against a Waters Symmetry Shield C18 column (150 × 4.6 mm2 , 5 µm) using an Agilent 1290, Infinity II series LC system. The method was applied to quantitatively estimate proprietary and in-house prepared pharmaceutical topical ophthalmic formulations containing MFX, VCZ and PIR at wavelength (λmax ) of 296, 260 and 316 nm. The method is sensitive enough to detect up to 0.1 ppm of analytes in the formulation. The method was further exploited to study and identify the possible degradation products of the analytes. The proposed chromatographic method is simple, economical, reliable and reproducible. In conclusion, the developed method could be applicable for routine quality control analysis of single or combined MFX, VCZ and PIR-containing units or bulk dosage forms in pharmaceutical industries and research organizations working on drug discovery and development.


Subject(s)
Voriconazole , Moxifloxacin , Chromatography, High Pressure Liquid/methods , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL
...