Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diseases ; 12(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39195171

ABSTRACT

Diabetic wounds (DWs) are considered chronic complications observed in patients suffering from type 2 diabetes mellitus (DM). Usually, DWs originate from the interplay of inflammation, oxidation, impaired tissue re-epithelialization, vasculopathy, nephropathy, and neuropathy, all of which are related to insulin resistance and sensitivity. The conventional approaches available for the treatment of DWs are mainly confined to the relief of wound pressure, debridement of the wound, and management of infection. In this paper, we speculate that treatment of DWs with 5-aminosalicylic acid (5-ASA) and subsequent activation of peroxisome proliferator-activated receptor gamma (PPAR-γ) and transforming growth factor beta (TGF-ß) via the AhR pathway might be highly beneficial for DW patients. This estimation is based on several lines of evidence showing that 5-ASA and PPAR-γ activation are involved in the restoration of insulin sensitivity, re-epithelialization, and microcirculation. Additionally, 5-ASA and TGF-ß activate inflammation and the production of pro-inflammatory mediators. Suitable stabilized formulations of 5-ASA with high absorption rates are indispensable for scrutinizing its probable pharmacological benefits since 5-ASA is known to possess lower solubility profiles because of its reduced permeability through skin tissue. In vitro and in vivo studies with stabilized formulations and a control (placebo) are mandatory to determine whether 5-ASA indeed holds promise for the curative treatment of DWs.

2.
Antibiotics (Basel) ; 13(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39061258

ABSTRACT

Bacterial histidine kinase (BHK) is a constituent of the two-component signaling (TCS) pathway, which is responsible for the regulation of a number of processes connected to bacterial pathogenicity, virulence, biofilm development, antibiotic resistance, and bacterial persistence. As BHK regulation is diverse, inhibitors can be developed, such as antibiotic synergists, bacteriostatic/bactericidal agents, virulence inhibitors, and biofilm inhibitors. Inhibition of essential BHK has always been an amenable strategy due to the conserved binding sites of the domains across bacterial species and growth dependence. Hence, an inhibitor of BHK might block multiple TCS regulatory networks. This review describes the TCS system and the role of BHK in bacterial virulence and discusses the available inhibitors of BHK, which is a specific response regulator with essential structural features.

SELECTION OF CITATIONS
SEARCH DETAIL
...