Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res X ; 13: 100117, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34585132

ABSTRACT

Biofouling is one of the major factors causing decline in membrane performance in reverse osmosis (RO) plants, and perhaps the biggest hurdle of membrane technology. Chemical cleaning is periodically carried out at RO membrane installations aiming to restore membrane performance. Typical cleaning agents used in the water treatment industry include sodium hydroxide (NaOH) and hydrochloric acid (HCl) in sequence. Rapid biofilm regrowth and related membrane performance decline after conventional chemical cleaning is a routinely observed phenomenon due to the inefficient removal of biomass from membrane modules. Since extracellular polymeric substances (EPS) make up the strongest and predominant structural framework of biofilms, disintegration of the EPS matrix should be the main target for enhanced biomass removal. Previously, we demonstrated at lab-scale the use of concentrated urea as a chemical cleaning agent for RO membrane systems. The protein denaturation property of urea was exploited to solubilize the proteinaceous foulants, weakening the EPS layer, resulting in enhanced biomass solubilization and removal from RO membrane systems. In this work, we investigated the impact of repeated chemical cleaning cycles with urea/HCl as well as NaOH/HCl on biomass removal and the potential adaptation of the biofilm microbial community. Chemical cleaning with urea/HCl was consistently more effective than NaOH/HCl cleaning over 6 cleaning and regrowth cycles. At the end of the 6 cleaning cycles, the percent reduction was 35% and 41% in feed channel pressure drop, 50% and 70% in total organic carbon, 30% and 40% in EPS proteins, and 40% and 66% in the peak intensities of protein-like matter, after NaOH/HCl cleaning and Urea/HCl cleaning, respectively. 16S ribosomal RNA (rRNA) gene sequencing of the biofilm microbial community revealed that urea cleaning does not select for key biofouling families such as Sphingomonadaceae and Xanthomonadaceae that are known to survive conventional chemical cleaning and produce adhesive EPS. This study reaffirmed that urea possesses all the desirable properties of a chemical cleaning agent, i.e., it dissolves the existing fouling layer, delays fresh fouling accumulation by inhibiting the production of a more viscous EPS, does not cause damage to the membranes, is chemically stable, and environmentally friendly as it can be recycled for cleaning.

2.
Water Res X ; 1: 100004, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-31194008

ABSTRACT

Chemical cleaning is routinely performed in reverse osmosis (RO) plants for the regeneration of RO membranes that suffer from biofouling problems. The potential of urea as a chaotropic agent to enhance the solubilization of biofilm proteins has been reported briefly in the literature. In this paper the efficiency of urea cleaning for RO membrane systems has been compared to conventionally applied acid/alkali treatment. Preliminary assessment confirmed that urea did not damage the RO polyamide membranes and that the membrane cleaning efficiency increased with increasing concentrations of urea and temperature. Accelerated biofilm formation was carried out in membrane fouling simulators which were subsequently cleaned with (i) 0.01M sodium hydroxide (NaOH) and 0.1M hydrochloric acid (HCl) (typically applied in industry), (ii) urea (CO(NH2)2) and hydrochloric acid, or (iii) urea only (1340 g/Lwater). The pressure drop over the flow channel was used to evaluate the efficiency of the applied chemical cleanings. Biomass removal was evaluated by measuring chemical oxygen demand (COD), adenosine triphosphate (ATP), protein, and carbohydrate content from the membrane and spacer surfaces after cleaning. In addition to protein and carbohydrate quantification of the extracellular polymeric substances (EPS), fluorescence excitation-emission matrix (FEEM) spectroscopy was used to distinguish the difference in organic matter of the remaining biomass to assess biofilm solubilization efficacy of the different cleaning agents. Results indicated that two-stage CO(NH2)2/HCl cleaning was as effective as cleaning with NaOH/HCl in terms of restoring the feed channel pressure drop (>70% pressure drop decrease). One-stage cleaning with urea only was not as effective indicating the importance of the second-stage low pH acid cleaning in weakening the biofilm matrix. All three chemical cleaning protocols were equally effective in reducing the concentration of predominant EPS components protein and carbohydrate (>50% reduction in concentrations). However, urea-based cleaning strategies were more effective in solubilizing protein-like matter and tyrosine-containing proteins. Furthermore, ATP measurements showed that biomass inactivation was up to two-fold greater after treatment with urea-based chemical cleanings compared to the conventional acid/alkali treatment. The applicability of urea as an alternative, economical, eco-friendly and effective chemical cleaning agent for the control of biological fouling was successfully demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...