Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 406(22): 5323-37, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24948093

ABSTRACT

This work enabled the identification of major transformation products (TPs) of thiabendazole (TBZ) during the Fenton process. TBZ is a benzimidazole fungicide widely used around the world to prevent and/or treat a wide range of fruit and vegetable pathogens. The degradation of the parent molecule and the identification of the main TPs were carried out in demineralized water. The TPs were monitored and identified by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS/MS). Up to 12 TPs were tentatively identified. Most of them were eliminated after 15 min of treatment time and originated from numerous hydroxylations undergone by the aromatic ring during the initial stages of the process.

2.
Anal Bioanal Chem ; 406(11): 2549-58, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24577576

ABSTRACT

This work allowed the identification of major transformation products (TPs) of acetamiprid (ACTM) during Fenton process. Acetamiprid is a chloronicotinoid insecticide widely used around the world for its characteristics (high insecticidal activity, good systemic properties, suitable field stability, etc.). The degradation of the parent molecule and the identification of the main TPs were evaluated in different water matrices (demineralized water and real agro-food industrial wastewater). TPs of acetamiprid generated by Fenton experiments were monitored and identified by liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS). Up to 14 TPs were characterized based on the accurate mass of the molecular ion and fragment ions obtained in both full-scan and MS/MS modes. Most of them were eliminated after 75 min of treatment time in demineralized water. However, in real agro-food industrial wastewater, most of them were eliminated at 90 min of treatment time, demonstrating the influence of the matrix composition on the studied compound degradation.


Subject(s)
Pesticides/chemistry , Pyridines/chemistry , Water Pollutants, Chemical/chemistry , Chromatography, Liquid/methods , Hydrogen Peroxide/chemistry , Iron/chemistry , Mass Spectrometry/methods , Neonicotinoids , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...