Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychiatr Res ; 160: 195-203, 2023 04.
Article in English | MEDLINE | ID: mdl-36842332

ABSTRACT

A single exposure to some stressors results in long-lasting consequences reminiscent of those found in post-traumatic stress disorder (PTSD), but results are very often controversial. Although there is no consensus regarding the best animal models of PTSD, the single prolonged stress (SPS) model, consisting of sequential exposure within the same day to various stressors (typically restraint, forced swim, and ether), has gained acceptance. However, results, particularly those related to the hypothalamic-pituitary-adrenal (HPA) axis, are inconsistent and there is no evidence that SPS is clearly distinct from models using a single severe stressor. In the present study, we compared in male rats the behavioral and neuroendocrine (HPA) consequences of exposure to immobilization on boards (IMO) with a SPS-like model (SPSi) in which IMO and isoflurane were substituted for restraint and ether, respectively. Both procedures caused a similar impact on food intake and body weight as well as on sensitization of the HPA response to a novel environment (hole-board) on the following day. Reduction of activity/exploration in the hole-board was also similar with both stressors, although the impact of sudden noise was higher in SPSi than IMO. Neither IMO nor SPSi significantly affected contextual fear conditioning acquisition, although a similar trend for impaired fear extinction was observed compared to controls. Exposure to additional stressors in the SPSi did not interfere with homotypic adaptation of the HPA axis to IMO. Thus, only modest neuroendocrine and behavioral differences were observed between IMO and SPSi and more studies comparing putative PTSD models are needed.


Subject(s)
Hypothalamo-Hypophyseal System , Stress Disorders, Post-Traumatic , Rats , Male , Animals , Rats, Sprague-Dawley , Corticosterone , Extinction, Psychological , Pituitary-Adrenal System , Fear , Restraint, Physical , Models, Animal , Ethers , Stress, Psychological
2.
Neurobiol Stress ; 15: 100355, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34307794

ABSTRACT

Rat and mouse strains differ in behavioral and physiological characteristics, and such differences can contribute to explain discrepant results between laboratories and better select the most appropriate strain for a particular purpose. Differences in the activity of the hypothalamic-pituitary-adrenal (HPA) axis are particularly important given the pivotal role of this system in determining consequences of exposure to stressors. In this regard, Long-Evans (LE) rats are widely used in stress research, but there is no specific study aiming at thoroughly characterizing HPA activity in LE versus other extensively used strains. In a first experiment, LE showed higher resting ACTH and corticosterone levels only at certain points of the circadian rhythm, but much greater ACTH responsiveness to stressors (novel environment and forced swim) than Sprague-Dawley (SD) rats. Accordingly, enhanced corticotropin-releasing hormone (CRH) expression in the paraventricular nucleus of the hypothalamus and reduced expression of glucocorticoid receptors were observed in the hippocampal formation. Additionally, they are hyperactive in novel environments, and prone to adopt passive-like behavior when compared to SD rats. Supporting that altered HPA function has a marked physiological impact, we observed in another set of animals much lower thymus weight in LE than SD rats. Finally, to demonstrate that LE rats are likely to have higher HPA responsiveness to stressors than most strains, we studied resting and stress levels of HPA hormones in LE versus Wistar and Fischer rats, the latter considered an example of high HPA responsiveness. Again, LE showed higher resting and stress levels of ACTH than both Wistar and Fischer rats. As ACTH responsiveness to stressors in LE rats is stronger than that previously reported when comparing other rat strains and they are commercially available, they could be an appropriate model for studying the behavioral and physiological implications of a hyper-active HPA axis under normal and pathological conditions.

3.
Psychoneuroendocrinology ; 125: 105127, 2021 03.
Article in English | MEDLINE | ID: mdl-33453596

ABSTRACT

Biological response to stressors is critical to understand stress-related pathologies and vulnerability to psychiatric diseases. It is assumed that we can identify trait-like characteristics in biological responsiveness by testing subjects in a particular stressful situation, but there is scarce information on this issue. We then studied, in a normal outbred population of adult male rats (n = 32), the response of well-characterized stress markers (ACTH, corticosterone and prolactin) to different types of stressors: two novel environments (open-field, OF1 and OF2), an elevated platform (EP), forced swim (SWIM) and immobilization (IMO). Based on both plasma ACTH and prolactin levels, the OF1 was the lowest intensity situation, followed by the OF2 and the EP, then SWIM and finally IMO. When correlations between the individual responses to the different stressors were studied, the magnitude of the correlations was most dependent on the similarities in intensity rather than on other characteristics of stressors, with good correlations between similar intensity stressors and no correlations at all were found between stressors markedly differing in intensity. In two additional confirmatory experiments (n = 37 and n = 20) with HPA hormones, we observed good correlation between the response to restraint and IMO, which were close in intensity, and no correlation between OF1 and SWIM. The present results suggest that individual neuroendocrine response to a particular stressor does not predict the response to another stressor greatly differing in intensity, thus precluding characterization of low or high responsive individuals to any stressor in a normal population. The present data have important implications for human studies.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Adrenocorticotropic Hormone/metabolism , Animals , Corticosterone , Hypothalamo-Hypophyseal System/metabolism , Individuality , Male , Pituitary-Adrenal System/metabolism , Prolactin , Rats , Rats, Sprague-Dawley , Restraint, Physical , Stress, Physiological , Stress, Psychological
4.
Sci Rep ; 9(1): 3180, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816288

ABSTRACT

Exposure to stress during adolescence exerts a long-term impact on behavior and might contribute to the development of several neuropsychiatric disorders. In adults, control over stress has been found to protect from the negative consequences of stress, but the influence of controllability at early ages has not been extensively studied. Here, we evaluated in a rodent model the effects of repeated exposure in adolescent male rats to controllable versus uncontrollable foot-shock stress (CST or UST, respectively). Rats were assigned to three groups: non-stress (stress-naïve), CST (exposed to 8 sessions of a two-way shuttle active avoidance task over a period of 22 days) and UST (receiving the same amount of shocks as CST, regardless of their actual behavior). During adulthood, different cohorts were tested in several tasks evaluating inhibitory control and cognitive flexibility: 5-choice serial reaction time, delay-discounting, gambling test and probabilistic reversal learning. Results showed that the hypothalamic-pituitary-adrenal response to the first shock session was similar in CST and UST animals, but the response to the 8th session was lower in CST animals. In adulthood, the UST animals presented impaired motor (but not cognitive) impulsivity and more perseverative behavior. The behavioral effects of UST were associated with increased number of D2 dopamine receptors in dorsomedial striatum, but not in other striatal regions. In summary, UST exposure during adolescence induced long-term impairments in impulsivity and compulsivity, whereas CST had only minor effects. These data support a critical role of stress uncontrollability on the long-lasting consequences of stress, as a risk factor for mental illnesses.


Subject(s)
Endocrine System/physiology , Impulsive Behavior/physiology , Receptors, Dopamine D2/metabolism , Stress, Psychological , Age Factors , Animals , Behavior, Animal/physiology , Choice Behavior/physiology , Cognition/physiology , Corpus Striatum/physiology , Delay Discounting/physiology , Humans , Male , Rats , Reaction Time/physiology
5.
Article in English | MEDLINE | ID: mdl-28095308

ABSTRACT

We have recently demonstrated that adaptation of the hypothalamic-pituitary-adrenal (HPA) axis to repeated exposure to a stressor does not follow the rules of habituation and can be fully expressed after a single experience with severe stressors. In the present work we tested the hypothesis that adaptation could be impaired if animals experience malaise during initial exposure to the stressor. To this end, animals were allowed to drink saccharin for 30min before being exposed for 3h to immobilization on boards (IMO), a severe stressor; then they were given either saline or lithium ip after the first hour of IMO. Stress-naïve rats followed exactly the same procedure except IMO. Exposure to IMO caused a strong activation of the HPA axis whereas the effect of lithium was modest. Both IMO and lithium administration resulted in conditioned taste aversion to saccharin when evaluated 4days later. When all animals were exposed to IMO 6days later, reduced HPA response and less impact on body weight was observed in the two groups previously exposed to IMO as compared with stress-naïve rats. Therefore, lithium administration during the first IMO exposure did not affect adaptation of the HPA axis and weight gain. These results indicate that malaise per se only weakly activated the HPA axis and argue against the hypothesis that signs of physical malaise during exposure to the stressor could impair HPA adaptation.


Subject(s)
Adaptation, Physiological/drug effects , Antimanic Agents/adverse effects , Hypothalamo-Hypophyseal System/drug effects , Lithium Chloride/adverse effects , Pituitary-Adrenal System/drug effects , Stress, Psychological/drug therapy , Adrenocorticotropic Hormone/blood , Animals , Body Weight/drug effects , Corticosterone/blood , Disease Models, Animal , Male , Radioimmunoassay , Rats , Rats, Sprague-Dawley , Saccharin/metabolism , Stress, Psychological/metabolism , Time Factors
6.
Behav Brain Res ; 265: 155-62, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24583189

ABSTRACT

Exposure to chronic unpredictable stress (CUS) is gaining acceptance as a putative animal model of depression. However, there is evidence that chronic exposure to stress can offer non-specific stress protection from some effects of acute superimposed stressors. We then compared in adult male rats the protection afforded by prior exposure to CUS with the one offered by repeated immobilization on boards (IMO) regarding some of the negative consequences of an acute exposure to IMO. Repeated exposure to IMO protected from the negative consequences of an acute IMO on activity in an open-field, saccharin intake and body weight gain. Active coping during IMO (struggling) was markedly reduced by repeated exposure to the same stressor, but it was not affected by a prior history of CUS, suggesting that our CUS protocol does not appear to impair active coping responses. CUS exposure itself caused a strong reduction of activity in the open-field but appeared to protect from the hypo-activity induced by acute IMO. Moreover, prior CUS offered partial protection from acute IMO-induced reduction of saccharin intake and body weight gain. It can be concluded that a prior history of CUS protects from some of the negative consequences of exposure to a novel severe stressor, suggesting the development of partial cross-adaptation whose precise mechanisms remain to be studied.


Subject(s)
Immobilization/physiology , Restraint, Physical/methods , Stress, Psychological/prevention & control , Animals , Body Weight/physiology , Eating/physiology , Electroshock/adverse effects , Exploratory Behavior/physiology , Food Preferences , Male , Motor Activity , Rats , Rats, Sprague-Dawley , Saccharin/administration & dosage , Stress, Psychological/etiology , Sweetening Agents/administration & dosage , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...